The Pocket IGCSE Pseudocode to Python
Reference Guide

Eason Qin Luojia (eason@ezntek.com)
Sixth Revision

December 1%, 2024

Note 1

For my classmates and fellow G1/G2 Computer Science Students, I EXPECT vyou
to have read this document prior to reading the next few pages. PLEASE DO NOT
ask me questions that have information contained in any of these notes. I will

refuse to answer your questions until yvou have clearly read every page of this

document.

I EXPECT you to know that this document is just a simple side-by-side
comparison/reference as to the differences between IGCSE Pseudocode and
Python. [EXPECT you to know that this is NOT COMPREHENSIVE! This does not
cover and does not intend to teach HOW to program in pseudocode! I will be
releasing a guide as to how to program in Pseudocode when the time comes. [f the
guide is already out, please head to https.//ezntek.com/revision to find it.

Note 2

All values in angle brackets, like so:
<variable name>
<type>
<value>

represent meta-variables or meta-values, which should wholly, i.e. including the beginning angle
bracket, <, to the ending angle bracket, >, be replaced with an actual value that is described
within the brackets.

In layman’s terms, everything between <> should be replaced with what it says inside. You
should not write the <> either.

Note 3

If there is an item that leaks onto a new line, such as,

FOR <counter> « <begin> TO <end> STEP
<step>

<statement>..
NEXT <counter>

Count it as if it were equal to:
FOR <counter> « <begin> TO <end> STEP <step>

<statement>..
NEXT <counter:>

https://ezntek.com/revision

Note 4

Some key definitions will be made:

Term Meaning
Expression Any variable name or value, function calls, or arithmetic expressions,
<expr> enclosed or not enclosed in brackets. It will be shortened to expr when
necessary.
Identifier A variable name. It will be shortened to ident when necessary.
<ident>
Operator a symbol that does something, such as math. They include symbols such as * +
- /etc.
Represents repetition, i.e. repeated statements. If there is a comma, such as
<statement>, ..
That implies that there can either be one statement <statement>, or many
statements separated by a comma, such as
<statement>, <statement>, <statement>
Note 5

This work copyright © Eason Qin 2024, and is licensed under the Creative Commons
Attribution-ShareAlike-NonCommercial 4.0 International license. Visit the Creative Commons
Website (https://creativecommons.org) for details. All prior versions are also licensed under
the same license.

Note 6

This is the fourth revision of the guide. If you have earlier revisions, view the changelog:

1.

AL .

Initial version.

Fixed syntax highlighting added consistency in the Functions section, and added this
note.

Added a License.
Fixed inconsistencies in the notes, and slight syntax highlighting changes
Fixed critical error in the For loop section

Fixed if statement indentations and array syntax

https://creativecommons.org/

Reference Guide

Item IGCSE Pseudocode Python

Comment // This is a comment. # This is a comment.

Used to // To comment, simply put two # To comment, simply put one

annotate code. // slashes (//) in front of your text. |# hashtag (#) in front of your
text.

Values // These are all INTEGER's, or whole # These are all int’s, or whole

Also known as | // numbexs # numbezrs

Literals, they | *? 42

represent -2043 -2043

values.

// These are all REAL's, or decimal
// numbezxs

3.14159

2.718282

56.52

// These are STRING's, or "text"
// (enclosed in only "):

"Good morning, user!"

"Thomas"

"Jason Lee"

// These are BOOLEAN's, either TRUE ox
FALSE
TRUE
FALSE

// These are CHAR's, or singular
// characters (enclosed only in ‘):
ICI

IFI

Ibl

these are all float's, or decimal
numbers

3.14159

2.718282

56.52

These are str’'s, or "text"
(enclosed in both " and ')
"Good morning, user!"
'"Thomas'

'Jason Lee'

These are bool's, either TRUE or
FALSE

True

False

there is no CHAR in Python, just
use a str.

Declaring a
variable

This is to make
it clear to the
computer that
the variable
€xists.

This is not
necessary in
Python.

DECLARE <variabhle name>: <type>

/] e.g.

DECLARE Name:
DECLARE TotalScozre:
// or,

DECLARE Name:
DECLARE TotalScozre:

<variable name>: <type>

e.g.
name:
total_score:

Assignment

<variable name> « <expression>

<variable name> = <expression>

Thisisusedto |// NOTE: you may write it like <- in
give a value to a // your computer. i e.g.
previously name = "Thomas"
declared /] e.g. total_score = 84
. Name ¢ "Thomas" name = first_name
variable. TotalScore « 84
Name « FirstName
Input and OUTPUT <expression> print(<expression>)
Output OUTPUT <expression>, print(<expression>, ...)
Thisisusedto |// Print however many things you # Print however many things you
give users // require. # require.
feedbackand INPUT <expression> <variable name> = input(<prompt>)
receive input.
// e.g. Fe.g.
OUTPUT "What is your name" print("What is your name")
OUTPUT "Welcome", Name print("Welcome", name)
OUTPUT "What is your Social Security
Number?" # Note that if you need to input
INPUT SocialSecurityNumber # something into an integer, you must
OUTPUT "What is your ID?" # wrap input in int, or separate them
INPUT ID # like so:
social_security_number = int(input())
id = dinput("What is your ID?")
id = int(id)
Arithmetic <expr> <operator> <expr> <expr> <operator> <expr>
(expression)
This is to do /] e.g. #e.g.
math. 2+ 5 2+ 5
(3% X) +1 (3 % x) +1
// you can combine it with an # you can combine it with an
// asasignment, like so: # assignment, like so:
NextTerm ¢« X + 1 next_term = x + 1
Arithmetic // They DO NOT exist in pseudocode, <ident> <operator>= <expr>
Assignments |// but may be substituted with:
This is to)) #e.g.
perform a math <ident> ¢« <ident> <operator> <expr> age += 1
operation on temperature -=
t’he Vafiable' /{gee;gAge +1
l'tself mclu‘dmg Temperature ¢ Temperature - 5
mcrementmg a

variable, etc.

Comparison

Operators
This is to check

the relation
between two
values, such as
equality,
greater or less
than, not equal
to, etc.

// Equality
Age = 18

// Greater than, less than
Age > 18
Age < 18

// Greater than or equal to, less
// than or equal to

Age >= 18

Age <= 18

// Not equal to
Age <> 18

Equality
age == 18

Greater than, less than
age > 18
age < 18

Greater than or equal to, less
than or equal to

age >= 18

age <= 18

Not equal to
age != 18

Boolean
Expressions
This is akin to
logic gates; it is

// is one condition TRUE AND the
// other one true?

ConditionOne AND ConditionTwo

is one condition TRUE AND the
other one true?

condition_one and condition_two

to process one // is one condition TRUE OR the ## is one condition TRUE OR the
or two boolean // other one true? # other one true?
values and
evaluate it to ConditionOne OR ConditionTwo condition_one or condition_two
True or False
depending on // 1s the condition NOT true? # is the condition NOT true?
the operator.
NOT Condition not condition
Conditional // either: if <condition>:
Branching (if) |IF <condition> <code> i PRESS SPACE 4 TIMES!
This is to make | THEN // PRESS SPACE TWICE! |else:
a decision, a <code> // PRESS SPACE TWICE! <code>
hoice, to ask a ELSE
¢ 7 <code> // PRESS SPACE TWICE! # or
question, ENDIF if <condition>:
whichever <code>
interpretation |// or:
pleases you. IF <condition> #e.g.
THEN if age > 18:
<code> print("you can drink!")
ENDIF else:
print("you cannot drink...")
/] e.g.
IF Age > 18
THEN
OUTPUT "you can drink!"
ELSE

OUTPUT "you cannot drink..."
ENDIF

Chained
conditional
branching (if-
else if-else)
This is to ask
multiple
questions in a
row.

Note that in
pseudocode,
you must follow
this
indentation
exactly, i.e.
THEN must be

// This does not exist in pseudocode,
but can be emulated in the following
way :

IF <condition>
THEN
<code>
ELSE
IF <condition>
THEN
<code>
ELSE
<code>
ENDIF
ENDIF

with the IF statement inside the
larger ELSE statement being able

/7
/7

if <condition>:
<code>

elif <condition>:
<code>

else:
<code>

e.g.
if age > 18:
print("you can drink!")
elif age > 16:
print("you can almost drink!")
else:
print("you can’t drink...")

on a new line // to be repeated as many times as
and indented |// needed.
by 2 spaces, and
the code block |IF Age > 18
by 4, ELSE by THEN . o
none, and the OUTPUT "You can drink!
code block that ELSE
IF Age > 16
follows by 2. THEN
OUTPUT "You can almost drink!"

ALL OTHER ELSE
CODE BLOCKS OUTPUT "You can’t drink.."
ARE ENDIF
INDENTED BY |ENDIF
4 SPACES.
Pattern CASE OF <expzr> match <expr>:
Matching <expr>: <statement> case <expr>:
This is like <expr>: <statement> <code>

. ... case <expr>:
éZZ?ZiZQZZ?e // optionally, <code>

OTHERWISE <statement> .
theonethat | enpease # This is equivalent to OTHERWISE
you have, and case _:
then doing /] e.g. <code>
something CASE OF BottleMaterial
when you find "Plastic": OUTPUT "Unsustainable..." |match bottle_material:
it. “Metal": OUTPUT "Sustainable!" case "Plastic":
NOTE that "Glass": OUTPUT "Fragile..." print("Unsustainable...")
using match in "Paper": OUTPUT "WHY?" case "Metal":
Python requires OTHERWISE OUTPUT "Unrecognized" print("Sustainable!")
ENDCASE case "Glass":

version 3.10 or
later. If you use
the latest
version of
Thonny or
Replit, you will
be OK.

print("Fragile...")
case "Paper":
print("WHY?")
case _:
print("Unrecognized")

Pre-condition

WHILE <condition> DO

while <condition>:

iteration <code> <code>
(while) ENDWHILE
e.g.

.. /] e.g. while number > 1:
This is to WHILE Number > 1 DO number -=
7ﬁpea“%ﬂyd0 Number ¢ Number - 1 print("The number is now",number)
tasks, while OUTPUT "The number is now", Number
some condition | ENDWHILE
is true (so to not
infinitely loop).
Post- REPEAT # Repeat-until loops do not exist in
condition <code> # Python due to it being mostly
iteration UNTIL <condition> # redundant. You cannot do post-

(repeat-until)

This is also to
repeatedly do
tasks, while
some condition
is true, however
the condition is
checked after
the code is run
and not before.

In pseudocode,
these post-
condition loops
have an
inverted
condition,
meaning that it
does something
until the
condition is
true, not while
it is true.

/] e.g.

REPEAT
OUTPUT "Enter the password..."
INPUT Passwozrd

IF Password <> "Secret"
THEN
OUTPUT "Wrong..."
ENDIF
UNTIL Password = "Secret"

condition loops either. You can
replicate the example like so:

negate the condition
while password != "Secret"':
password = input("Enter the
password...")
if password != "Secret":
print("Wrong...")

Arrays
This is used to

store sequences
of data, or
grids/matrices
of data.

Arraysin
Pseudocode
begin at 1, and
they begin at 0
in Python.

In Pseudocode, arrays are STATIC,
meaning that you cannot add or

// remove elements dynamically.

//

// Declaring an ARRAY (1 dimensional)
//

// 1 is the lower bound, h is the

// higher bound

DECLARE <ident>: [1:h] OF <type>
// Declaring an ARRAY (2 dimensional)
//

// 11 and hl are the bounds of the

// first dimension, 12 and h2 are the
// bounds of the second dimension
DECLARE <ident>: [11:h1,12:h2] OF
<type>

/] e.g.

DECLARE StudentNames: [41:5] OF

// Adapted from the IGCSE Syllabus
DECLARE TicTacToe: [1:3,1:3] OF

// Assign to an ARRAY (1 dimensional)
StudentNames[2] ¢« "Marcos"
TicTacToe[1:3] « ‘X’

// Use an ARRAY
<ident>[<index>] // 1D ARRAY
<ident>[<index1>,<index2>] // 2D ARRAY

/] e.g.

StudentNames[3] // get 3* student name

TicTacToe[2:1] // get the character at
// 2, 1 on the Tic Tac
// Toe board

Python does not have pseudocode

ARRAYs, i.e. sequences of data of a
fixed length, however, Python does

have lists with push-back/pop-back

functionality.

i

You must also initialize every list
before using them!

.

Declaring a list (1 dimensional)

you do not have to specify bounds!
<ident>: [<type>]

Declaring a list (2 dimensional)
<ident>: [[<type>]]

Initializing a list (1D):
<ident> = []

Initializing a list (2D)

<ident> = [[1]
e.g.
student_names: [str]

Python does not have CHAR!
tic_tac_toe: [[11

Assign to a list
student_names[2] = "Marcos"

You can even assign a whole list!
student_names = ["Tom", "James",
"Jimmy", "John", "Peter"]

Use a list
<ident>[<index>] # 1D 1list
<ident>[<index1>][<index2>] # 2D list

e.g.
student_names[3] # get 3* student
name
tic_tac_toe[2][1] # get the character
at 2, 1 on the
Tic Tac Toe board

Iteration (for

FOR <counter> « <begin> TO <end>

for <counter> in range(<begin>,

This is to <code> <end>):
repeatedly do NEXT <counter> <code>
something until . . .
o counter FOR <counter> ¢ <begin> TO <end> STEP for <counter> in range(<begin>,
<step> <end>, <step>):
reaches?he' <code> <code>
end, which is NEXT <counter>
specified. # lists in Python begin at 0!
// e.g. Fe.g.
for counter in range(0, len(student_
// Assume LENGTH() calculates the names)):
// length of an array print("There is a student called
FOR Counter ¢ 1 TO LENGTH(StudentNames) |", student_names[counter], "in the
OUTPUT "There is a student called", |class.")
StudentNames[Counter], " in the class."
NEXT Counter for odd_number in range(1, 30, 2):
print(odd_number)
FOR OddNumber « 1 TO 30 STEP 2
OUTPUT OddNumber
NEXT OddNumber
Procedures // declaring procedures # all "procedures" below are
These are PROCEDURE <name> # technically functions, as Python
repeatable <code> # does not differentia?e between
sections of code ENDPROCEDURE # Procedures and Functions.
fhatcanbe PROCEDURE <name>(<parameter name>: # declaring procedures
invoked <type>, <parameter name>:<type>, ...) def <name>():
(called) over <code> <code>
and over as ENDPROCEDURE
many times as def <name>(<parameter name>:<type>,
needed. This // e.g. <parameter name>:<type>, ...):
might also be PROCEDURE SayHello <code>
called a OUTPUT "Hello!"
ENDPROCEDURE # e.g.
;?2?ragranh def say_hello():
. PROCEDURE Line(Size:) print("Hello!")
subroutine FOR Length « 1 TO Size
(outdated). OUTPUT ‘-’ def line(size:):
NEXT Length for length in range(1, size):
ENDPROCEDURE print('-")

// calling procedures
CALL <name>

CALL <name>(<parameter>,
<parameter>...)

// e.g.
CALL SayHello
CALL Line(10)

calling functions
<name>()
<name>(<parameter>, <parameter>...)

e.g.
say_hello()
line(10)

Functions // declaring functions # declaring functions
These are FUNCTION <name> RETURNS <type> def <name>() =-> <type>:
repeatable <code> <code>
sections of code, RETURN <expr> // you MU?T return return <expr> # you MU%T return
but they return // something! # something!
ENDFUNCTION
wﬂue% def <name>(<parameter name>:<type>,
meaning that | FUNCTION <name>(<parameter name>: <parameter name>:<type>, ...) =>
they usually <type>, <parameter name>:<type>, ...) <type>:
process or give |RETURNS <type> <code>
data back to <code> return <expr> # you MUST retuzn
the site of RETURN <expr> // you MUST return # something!
invocation, also // something!
known as the ENDFUNCTION
caller. #e.g.
’ // e.g. def gimme_£five() ->
FUNCTION GimmeFive RETURNS return 5
Procedures can RETURN 5
also be referred | ENDFUNCTION def add_one(num:) > :
to as fruitless result:
and Functions |FUNCTION AddOne(Num:) RETURNS result = num + 1
Sfruitful due to return result
functions DECLARE Result: . .
requiring a Result « Num + 1 #_calllvg functions
return value. RETURN Result gimme_five()
ENDFUNCTION add_one(5)
Pythondoesnot | // calling functions # ...or use them as expressions
differentiate GimmeFive() add_one (gimme_£five())
between AddOne (5) print(gimme_£five(), "+ 1 is",
functions and add_one(5))
procedures. // ...or use them as expressions
AddOne (GimmeFive())
OUTPUT GimmeFive(), "+ 1 is", AddOne(5)
File I/O // file modes include READ and WRITE # READ corresponds to 'r'
Self // # WRITE corresponds to 'w'
explanatory. // opening files . # READ AND WRITE corresponds to 'r+'
This relates to OPENFILE <file name> FOR <file mode> i or 'W+'
writing data # opening files . .
. // reading files (read into <variable>) |<ident> = open(<file name>, <file
and reading READFILE <file name>, <variable> mode>)
data from files
on the disk, // writing files (write from # reading files
hard drive, etc. |<variable>) <variable> = <ident>.read()
that is not in WRITEFILE <file name>, <variable>
memory. # writing files

// closing files
CLOSEFILE <file name>

/] e.g.

OPENFILE data.txt FOR READ AND WRITE
READFILE data.txt, Content

WRITEFILE data.txt, Content + "Hi!"
CLOSEFILE data.txt

<ident>.write(<variable>)

closing files
<ident>.close()

e.g.
file = open("data.txt", "r+")
content = file.read()

file.write(content + "Hi!")
file.close()

Appendix

The QR code for the online copy is found below.

It is hosted on my website, ezntek.com.

Alternatively, find it here.

(The URL is https.//ezntek.com/revision/pseudocode_reference.html)

The blog post, which has some more information, may be found here.

(The URL is https://ezntek.com/posts/the-igcse-pseudocode-to-python-reference-guide-for-g1-and-92-
computer-science-20241018t2049/)

https://ezntek.com/posts/the-igcse-pseudocode-to-python-reference-guide-for-g1-and-g2-computer-science-20241018t2049/
https://ezntek.com/posts/the-igcse-pseudocode-to-python-reference-guide-for-g1-and-g2-computer-science-20241018t2049/
https://ezntek.com/posts/the-igcse-pseudocode-to-python-reference-guide-for-g1-and-g2-computer-science-20241018t2049/
https://ezntek.com/revision/pseudocode_reference.html
https://ezntek.com/revision/pseudocode_reference.html
https://ezntek.com/

	Note 1
	Note 2
	Note 3
	Note 4
	Note 5
	Note 6
	Reference Guide
	Appendix

