
The   Pocket   IGCSE Pseudocode to Python   
Reference Guide

Eason Qin Luojia (eason@ezntek.com)

Fourth Revision

October 22nd, 2024



Note 1
For   my classmates and fellow G1/G2 Computer Science Students, I   EXPECT   you   
to have read this document prior to reading the next     few pages.   PLEASE DO   NOT   
ask me questions that have information contained in any of these notes. I  will 
refuse to answer your questions until  you have clearly read every page of this 
document.  

I    EXPECT    you  to  know  that  t  his   document  is  just  a  simple  side-by-side   
comparison/reference  as  to  the  differences  between  IGCSE  Pseudocode  and 
Python. I   EXPECT   you to know that this is   NOT COMPREHENSIVE!   This   does not   
cover and does not intend to teach HOW    to program in pseudocode! I will be   
releasing a guide as to how to program in Pseudocode when the time comes.   If the   
guide is already out, please head to   https://ezntek.com/revision   to find it.  

Note 2
All values in angle brackets, like so:

<variable name>

<type>

<value>

represent  meta-variables or meta-values, which should wholly, i.e. including the beginning angle 
bracket, <, to the ending angle bracket, >, be replaced with an actual value that is described 
within the brackets.

In layman’s  terms,  everything between <> should be replaced with what  it  says inside.  You 
should not write the <> either.

Note 3
If there is an item that leaks onto a new line, such as,

Count it as if it were equal to:

https://ezntek.com/revision


Note 4
Some key definitions will  be made:

Term Meaning

Expression
<expr>

Any variable name or value, function calls, or arithmetic expressions, 
enclosed or not enclosed in brackets. It will be shortened to expr when 
necessary.

Identifier
<ident>

A variable name. It will be shortened to ident when necessary.

Operator a symbol that does something, such as math. They include symbols such as * + 
- / etc.

... Represents repetition, i.e. repeated statements. If there is a comma, such as

    <statement>, …

That implies that there can either be one statement <statement>, or many 
statements separated by a comma, such as

    <statement>, <statement>, <statement>

Note 5
This  work  copyright  ©  Eason  Qin  2024,  and  is  licensed  under  the  Creative  Commons 
Attribution-ShareAlike-NonCommercial 4.0 International license. Visit  the Creative Commons 
Website (https://creativecommons.org) for details.  All prior versions are also licensed under 
the same license.

Note 6
This is the fourth revision of  the guide. If you have earlier revisions, view the changelog:

1. Initial version. 

2. Fixed syntax highlighting added consistency in the Functions section, and added this 
note.

3. Added a License.

4. Fixed inconsistencies in the notes, and slight syntax highlighting changes

https://creativecommons.org/


Reference Guide
Item IGCSE Pseudocode Python

Comment
Used to 
annotate code.

// This is a comment.
// To comment,  simply put two
// slashes (//) in front of your text.

# This is a comment.
# To comment, simply put one
# hashtag (#) in front of your
# text.

Values
Also known as 
Literals, they 
represent 
values.

// These are all INTEGER’s, or whole
// numbers
42
-2043

// These are all REAL’s, or decimal
// numbers
3.14159
2.718282
56.52

// These are STRING’s, or "text"
// (enclosed in only "):
"Good morning, user!"
"Thomas"
"Jason Lee"

// These are BOOLEAN’s, either TRUE or 
FALSE
TRUE
FALSE

// These are CHAR’s, or singular
// characters (enclosed only in ‘):
'c'
'F'
'b'

# These are all int’s, or whole
# numbers
42
-2043

# these are all float’s, or decimal
# numbers
3.14159
2.718282
56.52

# These are str’s, or "text" 
# (enclosed in both " and ')
"Good morning, user!"
'Thomas'
'Jason Lee'

# These are bool’s, either TRUE or
# FALSE
True
False

# there is no CHAR in Python, just 
use a str.

Declaring a 
variable
This is to make 
it clear to the 
computer that 
the variable 
exists.

This is not 
necessary in 
Python. 

DECLARE <variable name>: <type>

// e.g.
DECLARE Name: STRING
DECLARE TotalScore: INTEGER
// or,
DECLARE Name:STRING
DECLARE TotalScore:INTEGER

<variable name>: <type>

# e.g.
name: str
total_score: int



Assignment
This is used to 
give a value to a  
previously 
declared 
variable.

<variable name> ← <expression>
// NOTE: you may write it like <- in
// your computer.

// e.g.
Name ← "Thomas"
TotalScore ← 84
Name ← FirstName

<variable name> = <expression>

# e.g.
name = "Thomas"
total_score = 84
name = first_name

Input   and   
Output
This is used to 
give users 
feedback and 
receive input.

OUTPUT <expression>
OUTPUT <expression>, ...
// Print however many things you 
// require.

INPUT <expression>

// e.g.
OUTPUT "What is your name"
OUTPUT "Welcome", Name
OUTPUT "What is your Social Security 
Number?"
INPUT SocialSecurityNumber
OUTPUT "What is your ID?"
INPUT ID

print(<expression>)
print(<expression>, ...)
# Print however many things you
# require.

<variable name> = input(<prompt>)

# e.g.
print("What is your name")
print("Welcome", name)

# Note that if you need to input
# something into an integer, you must
# wrap input in int, or separate them
# like so:
social_security_number = int(input())
id = input("What is your ID?")
id = int(id)

Arithmetic 
(expression)
This is to do 
math.

<expr> <operator> <expr>

// e.g.
2 + 5
(3 * X) + 1

// you can combine it with an
// asasignment, like so:
NextTerm ← X + 1

<expr> <operator> <expr>

# e.g.
2 + 5
(3 * x) + 1

# you can combine it with an
# assignment, like so:
next_term = x + 1

Arithmetic 
Assignments
This is to 
perform a math  
operation on 
the variable 
itself, including 
incrementing a 
variable, etc.

// They DO NOT exist in pseudocode, 
// but may be substituted with:

<ident> ← <ident> <operator> <expr>

// e.g.
Age ← Age + 1
Temperature ← Temperature - 5

<ident> <operator>= <expr>

# e.g.
age += 1
temperature -= 5



Comparison 
Operators
This is to check 
the relation 
between two 
values, such as 
equality, 
greater or less 
than, not equal 
to, etc.

// Equality
Age = 18

// Greater than, less than
Age > 18
Age < 18

// Greater than or equal to, less
// than or equal to 
Age >= 18
Age <= 18

// Not equal to
Age <> 18

# Equality
age == 18

# Greater than, less than
age > 18
age < 18

# Greater than or equal to, less
# than or equal to
age >= 18
age <= 18

# Not equal to
age != 18

Boolean     
Expressions
This is akin to 
logic gates; it is 
to process one 
or two boolean 
values and 
evaluate it to 
True or False 
depending on 
the operator.

// is one condition TRUE AND the
// other one true?

ConditionOne AND ConditionTwo

// is one condition TRUE OR the
// other one true?

ConditionOne OR ConditionTwo

// is the condition NOT true?

NOT Condition

# is one condition TRUE AND the
# other one true?

condition_one and condition_two

# is one condition TRUE OR the
# other one true?

condition_one or condition_two

# is the condition NOT true?

not condition

Conditional 
Branching (if)
This is to make 
a decision, a 
choice, to ask a 
question, 
whichever 
interpretation 
pleases you.

// either:
IF <condition>
  THEN         // PRESS SPACE TWICE!
    <code>     // PRESS SPACE TWICE!
ELSE
  <code>       // PRESS SPACE TWICE!
ENDIF

// or:
IF <condition>
  THEN
    <code>
ENDIF

// e.g.
IF Age > 18
  THEN
    OUTPUT "you can drink!"
ELSE
  OUTPUT "you cannot drink..."
ENDIF

if <condition>:
    <code>   # PRESS SPACE 4 TIMES!
else:
    <code>

# or
if <condition>:
    <code>

# e.g.
if age > 18:
    print("you can drink!")
else:
    print("you cannot drink...")



Chained 
conditional 
branching (if-
else if-else)
This is to ask 
multiple 
questions in a 
row.

Note that in 
pseudocode, 
you must follow  
this 
indentation 
exactly, i.e. 
THEN must  be 
on a new line 
and indented 
by 2 spaces, and 
the code block 
by 4, ELSE by 
none, and the 
code block that 
follows by 2.

ALL OTHER 
CODE BLOCKS  
ARE 
INDENTED BY 
4 SPACES.

// This does not exist in pseudocode, 
but can be emulated in the following 
way:

IF <condition>
  THEN
    <code>
ELSE
  IF <condition>
    THEN
      <code>
  ELSE
    <code>
ENDIF

// with the IF statement inside the 
// larger ELSE statement being able
// to be repeated as many times as
// needed.

IF Age > 18
  THEN
    OUTPUT "You can drink!"
ELSE
  IF Age > 16
    THEN
      OUTPUT "You can almost drink!"
  ELSE
    OUTPUT "You can’t drink..."
ENDIF

if <condition>:
    <code>
elif <condition>:
    <code>
else:
    <code>

# e.g.
if age > 18:
    print("you can drink!")
elif age > 16:
    print("you can almost drink!")
else:
    print("you can’t drink...")

Pattern 
Matching
This is like 
finding a value 
that matches 
the one that 
you have, and 
then doing 
something 
when you find 
it.
NOTE that 
using match in 
Python requires  
version 3.10 or 
later. If you use 
the latest 
version of 
Thonny or 
Replit, you will 
be OK.

CASE OF <expr>
  <expr>: <statement>
  <expr>: <statement>
  ...
  // optionally,
  OTHERWISE <statement>
ENDCASE

// e.g.
CASE OF BottleMaterial
  "Plastic": OUTPUT "Unsustainable..."
  "Metal": OUTPUT "Sustainable!"
  "Glass": OUTPUT "Fragile..."
  "Paper": OUTPUT "WHY?"
  OTHERWISE OUTPUT "Unrecognized"
ENDCASE

match <expr>:
    case <expr>:
        <code>
    case <expr>:
        <code>
    ...
    # This is equivalent to OTHERWISE
    case _:
        <code>

match bottle_material:
    case "Plastic":
        print("Unsustainable...")
    case "Metal":
        print("Sustainable!")
    case "Glass":
        print("Fragile...")
    case "Paper":
        print("WHY?")
    case _:

print("Unrecognized")



Pre-condition 
iteration 
(while)

This is to 
repeatedly do 
tasks, while 
some condition 
is true (so to not  
infinitely loop).

WHILE <condition> DO
    <code>
ENDWHILE

// e.g.
WHILE Number > 1 DO
    Number ← Number – 1
    OUTPUT "The number is now", Number
ENDWHILE

while <condition>:
    <code>

# e.g.
while number > 1:
    number -= 1
    print("The number is now",number)

Post-
condition 
iteration
(repeat-until)
This is also to 
repeatedly do 
tasks, while 
some condition 
is true, however  
the condition is 
checked after 
the code is run 
and not before.

In pseudocode, 
these post-
condition loops 
have an 
inverted 
condition, 
meaning that it  
does something 
until the 
condition is 
true, not while 
it is true.

REPEAT
    <code>
UNTIL <condition>

// e.g.
REPEAT
    OUTPUT "Enter the password..."
    INPUT Password
    IF Password <> "Secret"
      THEN
        OUTPUT "Wrong..."
    ENDIF
UNTIL Password = "Secret"

# Repeat-until loops do not exist in
# Python due to it being mostly
# redundant. You cannot do post-
# condition loops either. You can 
# replicate the example like so:

# negate the condition
while password != "Secret": 
    password = input("Enter the 
password...")
    if password != "Secret":
        print("Wrong...")



Arrays 
This is used to 
store sequences 
of data, or 
grids/matrices 
of data.

// In Pseudocode, arrays are STATIC,
// meaning that you cannot add or
// remove elements dynamically. 
//
// Declaring an ARRAY (1 dimensional)
//
// l is the lower bound, h is the 
// higher bound
DECLARE <ident>:ARRAY[l,h] OF <type>

// Declaring an ARRAY (2 dimensional)
//
// l1 and h1 are the bounds of the
// first dimension, l2 and h2 are the
// bounds of the second dimension
DECLARE <ident>:ARRAY[l1,h1:l2,h2] OF 
<type>

// e.g.
DECLARE StudentNames:ARRAY[1,5] OF 
STRING

// Adapted from the IGCSE Syllabus
DECLARE TicTacToe:ARRAY[1,3:1,3] OF 
CHAR

// Assign to an ARRAY (1 dimensional)
StudentNames[2] ← "Marcos"
TicTacToe[1,3] ← ‘X’

// Use an ARRAY
<ident>[<index>] // 1D ARRAY
<ident>[<index1>,<index2>] // 2D ARRAY

// e.g.
StudentNames[3] // get 3rd student name
TicTacToe[2,1] // get the character at
               // 2, 1 on the Tic Tac 
               // Toe board

# Python does not have pseudocode
# ARRAYs, i.e. sequences of data of a
# fixed length, however, Python does
# have lists with push-back/pop-back
# functionality.
#
# You must also initialize every list
# before using them!
#
# Declaring a list (1 dimensional)

# you do not have to specify bounds!
<ident>: list[<type>]

# Declaring a list (2 dimensional)
<ident>: list[list[<type>]]

# Initializing a list (1D):
<ident> = []

# Initializing a list (2D)
<ident> = [[]]

# e.g.
student_names: list[str]

# Python does not have CHAR!
tic_tac_toe: list[list[str]]

# Assign to a list
student_names[2] = "Marcos"

# You can even assign a whole list! 
student_names = ["Tom", "James", 
"Jimmy", "John", "Peter"]

# Use a list
<ident>[<index>] # 1D list
<ident>[<index1>][<index2>] # 2D list

# e.g.
student_names[3] # get 3rd student
                 # name
tic_tac_toe[2][1] # get the character
                  # at 2, 1 on the
                  # Tic Tac Toe board



Iteration (for)
This is to 
repeatedly do 
something until  
a counter 
reaches the 
end, which is 
specified.

FOR <counter> ← <begin> TO <end>
    <code>
NEXT <counter>

FOR <counter> ← <begin> TO <end> STEP 
<step>
    <code>
NEXT <counter>

// e.g.

// Assume LENGTH() calculates the
// length of an array
FOR Counter ← 1 TO LENGTH(StudentNames)
    OUTPUT "There is a student called", 
StudentNames[Counter], " in the class."
NEXT Counter

FOR OddNumber ← 1 TO 30 STEP 2
    OUTPUT OddNumber
NEXT OddNumber

for <counter> in range(<begin>, 
<end>):
    <code>

for <counter> in range(<begin>, 
<end>, <step>):
     <code>

# e.g.
for counter in range(1, len(student_
names)):
    print("There is a student called 
", student_names[counter], "in the 
class.")

for odd_number in range(1, 30, 2):
    print(odd_number)
    

Procedures
These are 
repeatable 
sections of code 
that can be 
invoked 
(called) over 
and over as 
many times as 
needed. This 
might also be 
called a 
subprogram, 
or a 
subroutine 
(outdated).

// declaring procedures
PROCEDURE <name>
    <code>
ENDPROCEDURE

PROCEDURE <name>(<parameter name>:
<type>, <parameter name>:<type>, ...)
    <code>
ENDPROCEDURE

// e.g.
PROCEDURE SayHello
    OUTPUT "Hello!"
ENDPROCEDURE

PROCEDURE Line(Size:INTEGER)
    FOR Length ← 1 TO Size
        OUTPUT ‘-’
    NEXT Length
ENDPROCEDURE

// calling procedures
CALL <name>
CALL <name>(<parameter>, 
<parameter>...)

// e.g.
CALL SayHello
CALL Line(10)

# all "procedures" below are
# technically functions, as Python
# does not differentiate between
# Procedures and Functions.

# declaring procedures
def <name>():
    <code>

def <name>(<parameter name>:<type>, 
<parameter name>:<type>, ...):
    <code>

# e.g.
def say_hello():
    print("Hello!")

def line(size: int):
    for length in range(1, size):
        print(‘-’)

# calling functions
<name>()
<name>(<parameter>, <parameter>...)

# e.g.
say_hello()
line(10)



Functions 
These are 
repeatable 
sections of code,  
but they return 
values, 
meaning that 
they usually 
process or give 
data back to 
the site of 
invocation, also  
known as the 
caller.

Procedures can 
also be referred 
to as fruitless 
and Functions 
fruitful due to 
functions 
requiring a 
return value.

Python does not  
differentiate 
between 
functions and 
procedures.

// declaring functions
FUNCTION <name> RETURNS <type>
    <code>
    RETURN <expr> // you MUST return
                  // something!
ENDFUNCTION

FUNCTION <name>(<parameter name>:
<type>, <parameter name>:<type>, ...) 
RETURNS <type>
    <code>
    RETURN <expr> // you MUST return
                  // something!
ENDFUNCTION

// e.g.
FUNCTION GimmeFive RETURNS INTEGER
    RETURN 5
ENDFUNCTION

FUNCTION AddOne(Num:INTEGER) RETURNS 
INTEGER
    DECLARE Result:INTEGER
    Result ← Num + 1
    RETURN Result
ENDFUNCTION

// calling functions
GimmeFive()
AddOne(5)

// ...or use them as expressions
AddOne(GimmeFive())
OUTPUT GimmeFive(), "+ 1 is", AddOne(5)

# declaring functions
def <name>() -> <type>:
    <code>
    return <expr> # you MUST return
                  # something!

def <name>(<parameter name>:<type>, 
<parameter name>:<type>, ...) -> 
<type>:
    <code>
    return <expr> # you MUST return
                  # something!

# e.g.
def gimme_five() -> int:
    return 5

def add_one(num: int) -> int:
    result: int
    result = num + 1
    return result

# calling functions
gimme_five()
add_one(5)

# ...or use them as expressions
add_one(gimme_five())
print(gimme_five(), "+ 1 is",  
add_one(5))

File I/O
Self 
explanatory. 
This relates to 
writing data 
and reading 
data from files 
on the disk, 
hard drive, etc. 
that is not in 
memory.

// file modes include READ and WRITE
//
// opening files
OPENFILE <file name> FOR <file mode>

// reading files (read into <variable>)
READFILE <file name>, <variable>

// writing files (write from 
<variable>)
WRITEFILE <file name>, <variable>

// closing files
CLOSEFILE <file name>

// e.g.
OPENFILE data.txt FOR READ AND WRITE
READFILE data.txt, Content
WRITEFILE data.txt, Content + "Hi!"
CLOSEFILE data.txt

# READ corresponds to 'r'
# WRITE corresponds to 'w'
# READ AND WRITE corresponds to 'r+'
# or 'w+'
# opening files
<ident> = open(<file name>, <file 
mode>)

# reading files
<variable> = <ident>.read()

# writing files
<ident>.write(<variable>)

# closing files
<ident>.close()

# e.g.
file = open("data.txt", "r+")
content = file.read()
file.write(content + "Hi!")
file.close()



Appendix

The  QR code for the online copy is found below.

It is hosted on my website, ezntek.com.

Alternatively, find it here.

(The URL is https://ezntek.com/revision/pseudocode_reference.html)

The blog post, which has some more information, may be found here.

(The URL is https://ezntek.com/posts/the-igcse-pseudocode-to-python-reference-guide-for-g1-and-g2-
computer-science-20241018t2049/)

https://ezntek.com/posts/the-igcse-pseudocode-to-python-reference-guide-for-g1-and-g2-computer-science-20241018t2049/
https://ezntek.com/posts/the-igcse-pseudocode-to-python-reference-guide-for-g1-and-g2-computer-science-20241018t2049/
https://ezntek.com/posts/the-igcse-pseudocode-to-python-reference-guide-for-g1-and-g2-computer-science-20241018t2049/
https://ezntek.com/revision/pseudocode_reference.html
https://ezntek.com/revision/pseudocode_reference.html
https://ezntek.com/

	Note 1
	Note 2
	Note 3
	Note 4
	Note 5
	Note 6
	Reference Guide
	Appendix

