

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

The (OFS) IGCSE Computer Science
G1 ExamGuide to Programming and

Logic Gates
Eason Qin Luojia (eason@ezntek.com), Siddharth Harish

(sid.falcon9@gmail.com) and Karthik Sankar (karthik@hackclub.com)

Second Revision

November 6th, 2024

2

mailto:eason@ezntek.com
mailto:sid.falcon9@gmail.com
mailto:karthik@hackclub.com

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Table of Contents
Table of Contents 3
Introduction 5

What is this guide? 5

License Notice 6

Important Information 7

Notes 8

Chapter Ten — Boolean Logic 9
Logic gates 9

Types of Logic Gates 10

NOT Gates 10

AND Gates 11

OR Gates 13

NAND Gates 14

NOR Gates 15

XOR Gates 16

Logic Expressions 17

How to deduct a logical expression from a circuit 18

Deducting a Logical Expression (Example) 18

Boolean Algebra Notation 22

Creating Truth Tables 23

Programming 26
Notes 26

Comments 28

Values 28

Variables & Types 29

Constants 30

Variable Casing Conventions 31

Input and Output 32

Math 33

Random Numbers and Rounding 34

Comparison Expressions (Boolean Expressions) 34

Logical Expressions 35

Expressions 36

Conditional Branching (Selection) 37

Else-if chaining vs writing many If statements 40

Pattern Matching 42

Pre- and Post-condition Loops 44

Pre-condition loops (While Loops) 44

3

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Post-condition loops (Do-While, Repeat-While, Repeat-Until Loops) 45

Arrays and Lists 47

Count-based Iteration (for) 49

Procedures 50

Functions 53

String Manipulation 55

File I/O 56

Appendix 58
Appendix One (Practice Projects) 58

1 — Attendance Program (Iteration, Branching) 58

2 — Class Totaling Program (Iteration and Totaling, Procedures) 59

3 – Password Creation System (String Manipulation, Iteration, Branching) 59

Appendix Two (Sample Project Implementations) 60

1 — Attendance Program 60

2 — Class Totaling Program 61

3 — Password Creation System 62

Appendix Three (Extra Terminology) 63

Appendix Four (Expressions in Python) 63

Appendix Five (Using this guide effectively) 64

Appendix Six (Digital Copies) 65

4

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Introduction

What is this guide?
You are looking at the IGCSE Computer Science @ OFS G1 Semester Exam Guide to
Programming and Logic Gates. This is an abridged version of the Computer Science
Revision Guide (or just CSRG) made for the G2 examination. As there is so much
overlap between programming and logic gates, I have abridged the version for my
grade so that you can use it.

Please note that this guide does not cover binary, data representation and
systems lifecycles! Please also use your own notes!

This guide aims to cover all about Logic Gates and Programming for the 2024~2026
batch of IGCSE CS students at OFS1. It aims to deliver the content in an informative
form, but with enough explanation to let you understand all the concepts. This is a text
that you should highlight and annotate to your heart’s content. It is meant to be
informative and explaining; if highlighting helps you, you should do it.

This is revision Two of the guide.

1. Initial Version.
2. Fixed an error about AND gates in the logic gates section (1 AND 1 = 0 to 1 AND 1

= 1)

Note: All references to “I”, “Me”, “Myself”, and similar refer to the main author, Eason
Qin.

For a quick tutorial as to how to use this guide, read appendix 5 at the very end.
Alternatively, follow this hyperlink.

1 Sorry if you’re from an earlier batch, but this guide is not for you! Content can, however, be
extrapolated; it will be done by myself at a later date. E-mail me (Eason) at eason@ezntek.com if
you want to know what’s happening.

5

mailto:eason@ezntek.com

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

License Notice
The whole work, along with all code produced by all contributors and I are licensed
under the Creative Commons Attribution-ShareAlike-NonCommercial (CC
BY-SA-NC) 4.0 International License.

This means that you can do the following:
1. You must attribute me, i.e. state that the work was produced by us, the creators if

you use it as a part of your work or teachings, or expand uponmy work.
2. You may use the guide for any purpose, you can use it to teach yourself or teach

others, whatever you like.
3. You may share the guide with anybody else with no restrictions.
4. If you want to create derivative works2, you are allowed to do so, as long as if

you put the exact same license on it. If it is not written in the text, it will be
implied. If you would like the document in its raw, editable form, you may ask
me.

a. You may then share it however you please. You can then add yourself to
the authors list.

5. Youmust not makemoney off of it.

Failure to comply means that I, and all other contributors may take any legal action on
you if needed.

2 Copy my work and expand upon or modify it.

6

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Important Information
This is mostly targeted to people who are less careful with reading.

1. I expect you to have read all the information below before asking me any
questions. If you ask me a question where the answer is contained in this
section, I will only point you to this section.

2. I expect you to know that this text, according to the title, is a reference guide. You
do not have to read the whole text, this document is for you to refer to. If you don’t
want to read, look in the table of contents for what you need, then jump to the
section.

3. I expect you to know that this guide may not contain important points of
information for your exam. As mentioned before, this is a reference guide,
PLEASE still use your own notes and class resources by your teacher to revise and
only use my guide as a supplement. This also does not cover any binary or
other topics in Chapter One, only prorgramming and logic gates! The guide
was written to the best of our abilities, but since this is not a textbook and is not
audited for a long time, expect there to be mistakes and cracks.

4. I expect you to find answers to simpler questions in the text itself. The text was
written to the best of our abilities, and despite the possibility of cracks, please
attempt to read the text before asking. Before asking, also do consult your class
resources and the textbook before asking me a question. I may not answer it if
you did not do any of the above.

5. I expect you to not be upset or angered, irritated, agitated, enraged or feel any
negative feelings when I release new revisions of the guide. It is not my fault for
updating it to the best of my ability. I am not responsible, and making revisions
is not my fault. If you have received an earlier physical copy, please ask me
nicely for a new one, or simply use the digital copy. There will be at least 2
revisions; by spotting mistakes for me or reminding me of points that I did not
include, you are helping not only yourself but also all other people who have the
guide to have the most updated information.

6. If this guide has any references to G2 material or content, please do not be
shocked or surprised; simply ignore it if you are informed, and if it doesn’t make
sense to you as you have never heard of it in your life, also do not be shocked.
This is just an abridged version of the G1 guide anyway.

Email eason@ezntek.com for any concerns on this matter.
7. You still have to know the Systems Lifecycle and Binary and other things for

your exam!

7

mailto:eason@ezntek.com

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Notes
1. This Revision Text is authored by Eason Qin Luojia with contributions from

Siddharth Harish, and was edited by Karthik Sankar and Eason Qin.
2. The exercises for the Chapter Ten content on Logic Gates may be pulled from

the textbook, but some are also produced by myself.
3. Formal Citations and a bibliography is not provided, as this is not an academic

research document, but a reference booklet produced either from directly
pulling examples from the textbook or already synthesized information. If you
require citations, please ask me personally.

If there is information that must be cited or would make sense if it is cited, like
extremely detailed data points that have not been previously synthesized, the
source will be provided as a footnote. In no case will MLA, APA, Harvard or
any other form of formal academic references to be used as this is not an
academic document.

Legally, all licenses will be followed; i.e. if the document has a license that
requires attribution, it will be provided, etc.

4. If an underlined portion of text, like the below:

Chatbots have mostly been replaced by LLMs, see the AI section below.

Is seen, and you have the printed copy, simply go to the section it says; refer to
the table of contents.

If you have the digital copy, you may notice that it is blue. Press on that blue
text; it is a hyperlink that you can click.

8

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Chapter Ten— Boolean Logic

Logic gates
Think of Logic Gates as part of a circuit3, however instead of thinking wires as carriers
of EMF and current4, think of them as either carrying a current or not carrying a
current, i.e. being on or off, or 1 and 0, with 1 being the presence of current, and 0
being the absence of current.

They are then put together into a logic circuit, which is like an electrical circuit, but
instead of having a power source and the beginning and end of the circuit being
connected, logic circuits take a number of 1s and 0s as input, and produce a number of
1s and 0s as output.

Data always flows from left to right in a logic circuit.

Above: A logic circuit for a full adder.

4 This is not physics, this is computer science. This side of computer science is more seen in
computer engineering, where people play with components like Resistors and Capacitors to
interact with circuits and chips.

3 Technically, they are components of a logic circuit.

9

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Types of Logic Gates5

NOT Gates

This is aNOT Gate. What does it do?

Note that Red and Blue represent different combinations.

From this we can tell that not gates, when data flows into them, reverses the value
given into it. If a 1 is given to aNOT gate, a 0 comes out!

5 Note that XNOR gates will not be covered as it is out-of-syllabus, but just know that XNOR
means exclusive NOR.

10

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

AND Gates

This is an AND Gate. What does it do?

● Think of it like a good relationship. Given two partners, given that both
partner A and partner B are happy (1), they are in a healthy relationship (1).

● If any of them is not happy, it is not a healthy relationship (0).

I will represent happy as 1, and unhappy as 0.

B

A 0 1

0 0 0

1 0 1

11

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

That was a truth table. It can also be written like this:

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

Truth tables show all combinations of inputs for a logic gate or circuit, and shows all
the possible outputs for that combination. For single gates, the first type may be used,
but for the purposes of the exam and the guide, the second type will be used.

This means that:
● If both person A and B are unhappy, the relationship is unhealthy. (0 AND 0 = 0)
● If person A is happy but B is unhappy, the relationship is unhealthy. (1 AND 0 =

0)
● If person A is unhappy but B is happy, the relationship is unhealthy (0 AND 1 =

0)
● If both person A and B are happy, the relationship is healthy (1 AND 1 = 0)

12

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

OR Gates

This is an OR Gate. What does it do?

● Think of it likemaking a cup of coffee. Let’s assume that a good cup of coffee
consists of creamer and sugar.

● If I put either creamer or sugar, it will taste alright, but if I drink it black, it won’t
taste as good.6 Therefore, if I put creamer or sugar, it will taste good.

This is the truth table:

A B Out

0 0 0

0 1 1

1 0 1

1 1 1

This means that:
● If you do not put creamer nor sugar, it will not taste good (0 OR 0 = 0)
● If you put creamer but not sugar, it will taste good (0 OR 1 = 1)
● If you put sugar but not creamer, it will taste good (1 OR 0 = 1)
● If you put both creamer and sugar, it will taste good (1 OR 1 = 1)

6 Please do not e-mail me arguing about how I should drink my coffee. This is an analogy :)

13

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

NAND Gates

This is aNAND Gate. What does it do?

● The N, and therefore the circle in front of the gate, means that it is flipped.
● This is similar to the AND gate

The truth table is as follows:

A B Out

0 0 1

0 1 1

1 0 1

1 1 0

The outputs are the reverse of the AND gate, the inputs must be anything but both 1.

Fun Fact!
You can build every other logic gate with a NAND gate, including NOT, AND and OR,
which can then be used to build NOR and XOR. Look it up online!

14

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

NOR Gates

This is aNOR Gate. What does it do?
● From the name, one can simply infer what it does. It is the inverse of the OR

gate.

The truth table is as follows:

A B Out

0 0 1

0 1 0

1 0 0

1 1 0

The outputs are the reverse of the OR gate, none of the inputs can be 1.

15

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

XOR Gates

This is an XOR Gate (or an EOR Gate). What does it do?.
● The X stands for Exclusive, the full name of the gate is exclusive or.
● Exclusive here denotes that only one exclusive input can be 1, i.e. either A and

B can be 1, but not both.

The truth table is as follows:

A B Out

0 0 0

0 1 1

1 0 1

1 1 0

Think of it like seasoning. If I have Rock Salt (A) and Sea Salt (B);
● If I don’t season my food at all, it will taste bad (0 XOR 0 = 0)
● If I season my food with Rock Salt, it will taste good (1 XOR 0 = 1)
● If I season my food with Sea Salt, it will state good (0 XOR 1 = 1)
● If I season my food with both rock and sea salt, my food will be too salty and

will not taste good (1 XOR 1 = 0)

16

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Logic Expressions
Logic Expressions are ways to express logical circuits in a compact form, like math
expressions.

Take the following logical circuit as an example:

We see 3 gates from left to right.

Let us fully label it:

Now, how do we build a logical expression?

For your reference, the logical expression for this is (A AND B) OR (NOT C).
How do we deduct this?

17

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

How to deduct a logical expression from a circuit
Let’s follow some rules:

1. Work left to right, or in computer science, bottom-up.7

2. Divide the diagram into comprehensible sections.
3. When we see a gate, put it in our head.
4. Put its inputs beside it.
5. Put it in brackets.
6. Go to the next gate of the section and jump to step 3 until there are none left.8

7. Go to the next section, and jump to step 3 until there are no more sections left.
The inputs may be an existing logical expression that you have built, like (A AND
B), or just a letter, like B.

Deducting a Logical Expression (Example)

Let us follow the rules.

● Work Bottom-up.
● Divide the diagram into sections.

8 Extra question for you, I just described a loop. Is this a pre-conditioned or post conditioned
loop?

7 This is assuming that this is a binary tree, except for NOT gates. Trees in computer science
have the trunk at the top and the most branches at the bottom.

18

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

● We see AND, we will put it in our head.

● Put the inputs beside it.

● Put it in brackets.
(A AND B)

● Repeat for NOT:

● Go to the next section:

Done! The logical expression is (A AND B) OR (NOT C).

19

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Let’s try it againwith a much harder example:

● Divide it into sections

● We see NAND, so we put it in our head.

● Fill in the sides:

20

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

● Repeat:

● Since A NAND B serves as the first input of OR, and C AND D serves as the
second, we can fit it like so:

● For the NOT gate, C AND D serves as the input, so we can fit it like so:

● Moving onto the XOR gate, the left side would be (A NAND B) OR (C AND D),
and the right would be (NOT (C AND D)), so the outcome would be:

The result would be

((A NAND B) OR (C AND D)) XOR (NOT (C AND D))

This is a muchmore complicated example, and may not even come on your test.

21

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Boolean Algebra Notation
Boolean algebra is a prominent field in mathematics as well. The mathematical portion
of boolean algebra you do not need to know for the final IGCSE exam nor for IB SL/HL
computer science9, but may need to know the boolean algebra notation for describing
logic gates.

Normal Boolean Algebra

A AND B 𝐴. 𝐵

A OR B 𝐴 + 𝐵

NOT A 𝐴

A NAND B (𝐴. 𝐵)

A NOR B (𝐴 + 𝐵)

A XOR B (𝐴. 𝐵) + (𝐴. 𝐵)

(A AND B) OR (NOT C) (𝐴. 𝐵) + 𝐶

(A NAND B) AND (C OR D) (𝐴. 𝐵). (𝐶 + 𝐷)

9 Subject to change! A new syllabus is currently being drafted, this may change.

22

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Creating Truth Tables
On the exam, you may be given a logic diagram like so10:

And be asked to create a truth table from this11. How?

Here are the steps:
1. Draw a table with all letters:

A B C P Q O

2. Write all the combinations (permutations) A B and C can be in terms of binary
values; to do that, you can simply count in Binary. Note that for n inputs, there
are 2n combinations of values.

11 For already advanced students, you must show all your working (at least for the G2 2025
examination batch).

10 Note that the intermediate steps P and Qmight not be on the final IGCSE test but will be on the
semester exam.

23

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

A B C P Q O

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

3. Begin evaluating each logic gate in the diagram, beginning on the first row. Just
like deducting logical expressions, work bottom up, top-down:

24

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

4. With these results, simply fill them out:

A B C P Q O

0 0 0 0 1 1

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

5. Repeat until you are done:

A B C P Q O

0 0 0 0 1 1

0 0 1 0 0 0

0 1 0 0 1 1

0 1 1 0 0 0

1 0 0 0 1 1

1 0 1 0 0 0

1 1 0 1 1 1

1 1 1 1 0 1

25

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Programming

Notes
1. Some points and code examples may be pulled from the Pocket IGCSE

Pseudocode to Python Reference Guide, which you can read by clicking the
Hyperlink or following the following link:

https://ezntek.com/revision/pseudocode_reference.html

For your examination (2025 batch), you may write program code12 or
pseudocode for the last question, a question that you should spend 30 minutes
on and is like a case study which you must write code for.

2. This does not aim to be a how to program in pseudocode and Python book.
This is only a short guide/refresher as to how to program in pseudocode; if you
want to learn programming you should read Beej’s guide to Python
Programming, the URLmay be found here:

https://beej.us/guide/bgpython/pdf/bgpython_a4_c_2.pdf

And you may then translate it to pseudocode when you feel comfortable
programming in Python.

3. All values in angle brackets, like so:
<variable name>
<type>
<value>

represent meta-variables ormeta-values, which should wholly, i.e. including the
beginning angle bracket, <, to the ending angle bracket, >, be replaced with an
actual value that is described within the brackets. You may find examples in the
below sections.

12 The terminology specified by the syllabus refers to code written in a real programming
language with a standardized runtime, like Python; as opposed to pseudocode, which is only
used to teach computer science.

26

https://ezntek.com/revision/pseudocode_reference.html
https://ezntek.com/revision/pseudocode_reference.html
https://ezntek.com/revision/pseudocode_reference.html
https://beej.us/guide/bgpython/pdf/bgpython_a4_c_2.pdf

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

4. Note that if something spills onto a new line, like:

Count it as:

27

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Comments
Commenting is like annotating your program13, and telling readers of your code which
part of your code does what. In your IGCSE examinations, you will get marks for
commenting your code thoroughly, and even in the real world it is good to comment
your code.

IGCSE Pseudocode Python
// This is a comment.
// To comment, simply put two
// slashes (//) in front of your text.

This is a comment.
To comment, simply put one
hashtag (#) in front of your text.

Values
Values, otherwise known as literals, are direct, raw values. These are used to represent
things like whole numbers and negative numbers (integers), decimal numbers (floats),
portions of text (like “good morning, computer!”) (strings), True or False values
(booleans), and single characters like ‘y’ or ‘n’.

IGCSE Pseudocode Python

// These are all INTEGER’s, or whole
// numbers
42
-2043

// These are all REAL’s, or decimal
// numbers
3.14159
56.52

// These are STRING’s, or "text"
// (enclosed in only "):
"Good morning, user!"
"Thomas"
"Jason Lee"

// These are BOOLEAN’s, either TRUE or
// FALSE
TRUE
FALSE

// These are CHAR’s, or singular
// characters (enclosed only in ‘):
'c'
'F'
'b'

These are all int’s, or whole
numbers
42
-2043

these are all float’s, or decimal
numbers
3.14159
56.52

These are str’s, or "text"
(enclosed in both " and ')
"Good morning, user!"
'Thomas'
'Jason Lee'

These are bool’s, either TRUE or
FALSE
True
False

there is no CHAR in Python, just use a
str.

13 A sequence of instructions that reaches the objective/problem you are trying to solve.

28

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Variables & Types
We have learned of values of different types. In order to store them somewhere so that
we can keep track of values throughout the life of our program, we use variables14.

These are like storage boxes, cans; anything you can imagine that stores something.
Variables can hold a value, like a number that represents the user’s age, a message to
broadcast to computers over the network, or simply a counter to keep track of a loop.
They have a name, or identifier, a type15, and a value. Under the hood, these are kept in
the computer’s RAM, ormemory16.

Above: a (bad) visualization of what a variable is

In order to use a variable, you mustmake it clear to the computer that the variable will
exist and be used in the first place; almost like allocating space in a warehouse. To do
this:

IGCSE Pseudocode Python
DECLARE <variable name>: <type>

// e.g.
DECLARE Name: STRING
DECLARE TotalScore: INTEGER

<variable name>: <type>

e.g.
name: str
total_score: int

Now we have declared our variables, now what do we do?

16 Refresher: this is short-term memory used by all programs to store temporary data and is
fully erased upon restarting your computer.

15 Optional in Python, but very much recommended.

14Not math variables! In math, variables represent either unknowns or predefined values. We do
not deal with unknowns in programming, but pre-defining a value and saving it somewhere is
common, the place you save it to is called a constant.

29

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

We can give them values by assigning a value to a variable. Note that in order to use a
variable, you must set it to something first. Declared variables will have the value None
in Python17.

IGCSE Pseudocode Python
<variable name> ← <expression>
// NOTE: you may write it like <- in
// your computer.

// e.g.
Name ← "Thomas"
TotalScore ← 84
Name ← FirstName

<variable name> = <expression>

e.g.
name = "Thomas"
total_score = 84
name = first_name

This will then put “Thomas” inside the variable named Name, put 84 in TotalScore, etc.
You can even assign variables to other variables to copy them!

Constants
These are similar to variables, but they are values that do not change throughout the
program, like a grade boundary in a program that determines the achievements of
students.

IGCSE Pseudocode Python
CONSTANT <variable name> <- <value>

// e.g.
CONSTANT Teacher <- "Hubbard"
CONSTANT PassMark <- 70

<VARIABLE_NAME> = <value>

e.g.
TEACHER = "Hubbard"
PASS_MARK = 70

17 Or it is simply undefined in many languages.

30

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Variable Casing Conventions
This is an often overlooked part of programming; naming your variables is quite
important! This section of the guide will not tell you what to call your variables exactly,
you can find some guidelines as to how to name variables in the appendix.

For context, you cannot have spaces in variable names when you write code18. This
is why you must follow a convention to name variables that would otherwise have
spaces. Here’s how you would name variables without spaces:

PascalCase (IGCSE Pseudocode) snake_case (Python)
FirstName
GoodMorningAmerica
OutsideTemperature
ClassroomStutdents
StudentMarks

first_name
good_morning_america
outside_temperature
classroom_students
student_maks

PascalCase was introduced back when the Pascal Programming Language19 was
conceived, it requires one to:

● Have the first letter of every word that follows capitalized
● Words do not need to be separated

snake_case was around for a long time, and was first mentioned in the C
Programming Language book by Brian Kernighan and Dennis Ritchie, but was
popularized by Python. It specifies the following rules:

● All letters must be lowercase
● Words must be separated by underscores

NOTE:When using Constants in Python, make sure that you use SCREAMING_SNAKE
_CASE, which is capitalized snake_case. In this guide, all Pseudocode variable and
function/procedure names will be in PascalCase, and for the Python Equivalents I will
rewrite them in snake_case. Consider doing the same.

19 Fun fact! Pascal was created as a compiler for pseudocode, so that people could write simple
and human-readable code. It was then adopted by many academic institutions and companies
at the same time; however, it was phased out.

18 Using spaces makes the code extremely hard to parse (process your code in order to execute
it)

31

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Input and Output
To make the program useful for a user, the programmust be able to take some input or
values from the user somehow, and also output things for the user to see. In these
languages, outputs and inputs are all on the console.

IGCSE Pseudocode Python
OUTPUT <expression>
OUTPUT <expression>, ...
// Print however many things you
// require.

INPUT <expression>

// e.g.
OUTPUT "What is your name"
OUTPUT "Welcome", Name
OUTPUT "What is your Social Security
Number?"
INPUT SocialSecurityNumber
OUTPUT "What is your ID?"
INPUT ID

print(<expression>)
print(<expression>, ...)
Print however many things you
require.

<variable name> = input(<prompt>)

e.g.
print("What is your name")
print("Welcome", name)

Note that if you need to input
something into an integer, you must
wrap input in int, or separate them
like so:
social_security_number = int(input("What
is your Social Security Number?"))

id = input("What is your ID?")
id = int(id)

We have learned enough to be able to write a program to take the user’s name, and
say “Hello, <name>!”

Advanced learners, you may choose to do so alone, but the answers are below:

IGCSE Pseudocode Python
DECLARE Name: STRING
OUTPUT "What is your name"
INPUT Name
OUTPUT "Hello ", Name

name: str
name = input("What is your name")
print("Hello ", name)

Note that declaring the variable in Python is mostly redundant; even when using a type checker20. You
may simply write name: str = input("What is your name") as well.

20 Python does support types, but they are not enforced (your code will work without them or if
you assign a string to an int, let's say), but there are programs that watch your code as you write
it, that warn you of type violations and effectively enforces types upon your program (mypy, pyright).
Programmers like myself enjoy it as it catches type-related errors much earlier on in the
programming cycle.

32

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Math
Math in programming is quite simple. Here’s how you do calculations on variables and
values:

IGCSE Pseudocode Python

<expr> <operator> <expr>

// e.g.
2 + 5
3 - 1
4 * 4 // multiplication
26 / 2 // division

// here are the special operators
13 DIV 2
5 MOD 2

// you can group them together
(3 * X) + 1

// you can combine it with an
// assignment, like so:
NextTerm ← X + 1

<expr> <operator> <expr>

e.g.
2 + 5
3 - 1
4 * 4 # multiplication
26 / 2 # division

here are the special operators
13 // 2
5 % 2

(3 * x) + 1

you can combine it with an
assignment, like so:
next_term = x + 1

Note that in programming, there are two special operators that do not exist in normal
math:

● Floor Division (DIV): This means doing normal division, but removing all
decimals, if any.

● Modulus (MOD): This means doing division, but giving the remainder of the
division instead.

You can also have arithmetic assignments, like so:

IGCSE Pseudocode Python
// They DO NOT exist in pseudocode,
// but may be substituted with:

<ident> ← <ident> <operator> <expr>

// e.g.
Age ← Age + 1
Temperature ← Temperature - 5

<ident> <operator>= <expr>

e.g.
age += 1
temperature -= 5

33

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

They are language constructs21 that allow you to do math on a variable and
immediately assign it back, you can see the behind-the-scenes on the left side.

You may increment one to your age on your birthday, or you may increment one to the
score counter for a team in a basketball video game. This would be the way that you
would do it.

Random Numbers and Rounding
You can also generate random values and round numbers like so:

IGCSE Pseudocode Python
ROUND(<ident>, <decimal places>)
RANDOM() // gives a number between 0

// and 1, with decimals

// Round a number to 1dp
ROUND(5.23, 1)
// Generate an integer between 0 and 10
ROUND(RANDOM() * 10, 0)

round(<expr>, <decimal places>)

you must put this at the beginning of
the file for this to work!22

import random

random.random()
random.randint(<lower>, <upper>)

Round a number to 1dp
round(5.23, 1)
Generate an integer between 0 and 10
round(random.random() * 10, 0)
or
random.randint(0, 10)

Comparison Expressions23 (Boolean Expressions)
These expressions allow you to compare two values based on these things:

● Equality (Are they the same)
● Inequality (Are they not the same?)
● Greater than
● Lesser than
● Greater than or equal to
● Less than or equal to

23 This is a boolean expression, meaning that it has two values (hence the bi- prefix)

22 I.e. importing. Since random is not part of the built-in function set as it is not as commonly
used. It is isolated into a library which is a collection of reusable code that you can “borrow”
anytime

21 A part of a programming language that makes up for the whole programming language.
Output and Input are constructs of pseudocode, as it is a component of pseudocode; and its
syntax sets it apart.

34

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

They all evaluate to booleans, meaning that you can substitute this for a direct boolean
value and therefore be able to use it in things such as and not limited to while loops, if
statements, C-style for loops if you choose to learn Java in the future, etc.

IGCSE Pseudocode Python
// Equality
Age = 18

// Greater than, less than
Age > 18
Age < 18

// Greater than or equal to, less
// than or equal to
Age >= 18
Age <= 18

// Not equal to
Age <> 18

Equality
age == 18

Greater than, less than
age > 18
age < 18

Greater than or equal to, less
than or equal to
age >= 18
age <= 18

Not equal to
age != 18

Logical Expressions24

Remember logic gates? Yeah, you can have them in programming too! But instead of
them being in a part of a circuit and evaluating to 1’s and 0’s, they take in booleans25 on
each side and evaluates to a boolean, similar to a logical expression.

IGCSE Pseudocode Python
// is one condition TRUE AND the
// other one true?

ConditionOne AND ConditionTwo

// is one condition TRUE OR the
// other one true?

ConditionOne OR ConditionTwo

// is the condition NOT true?

NOT Condition

is one condition TRUE AND the
other one true?

condition_one and condition_two

is one condition TRUE OR the
other one true?

condition_one or condition_two

is the condition NOT true?

not condition

On the next page are some examples to make it clearer:

25 Just as a reminder, booleans are True or False, they represent binary values and can only be
either true or false, like IsWaterHot or IsPlayerAlive.

24 This is also a boolean expression.

35

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

IGCSE Pseudocode Python
// is the coffee warm and sweetened?

CoffeeWarm AND CoffeeSweet

// Does the player have more than 10
// points OR is alive?

IsPlayerAlive OR PlayerPoints > 10

// Has the exit button not been
// pressed?

NOT ExitButtonPressed

is the coffee warm AND sweetened?

coffee_warm and coffee_sweet

does the player have more than 10
points OR is alive?

is_player_alive or player_points > 10

Has the exit button not been pressed?

not exit_button_pressed

Expressions
I must introduce the concept of expressions so that you can effectively use a
programming language, to easily funnel your thoughts and logical thought process
into a program efficiently by chaining expressions.

So far, we have covered a handful of expressions:
● Math Expressions
● Logical Expressions
● Comparison Expressions

All of the above, as per the name, are expressions. These are chunks of code that
evaluate or expand to values when the program is run, that can then be used as a part
of statements or other expressions. What I mean is:

IGCSE Pseudocode Python
// Step one: Original
// Assume score is 5 and boundary is
// 7, and IsAlive is True

(Score + 1 < Boundary) AND IsAlive

// Step Two

(6 < 7) AND IsAlive

// Step Three

FALSE AND TRUE

// Step Four

FALSE

Step one: Original
Assume score is 5 and boundary is
7, and is_alive is True

(score + 1) < boundary and is_alive

step two

(6 < 7) and is_alive

step three

False and True

step four

False

36

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

That was a simulation of what happens under the hood. All expressions are able to
magically mutate and evaluate to things. Since variables may be included, the
outcomes may also change.

Here’s an exercise; What if Boundary were 7 and score were 7? Would the outcome be
True or False?

Here is a non-exhaustive list of things that can be expressions in both Python and
Pseudocode:

● Math Operations
● Comparison Operations
● Logical Operations
● Function Calls (does not include functions that return values).
● Array Indexes
● String Indexes
● String Slices (substrings in pseudocode)
● Array Slices (Python Only)

For advanced learners, visit section four of the appendix to find an actually exhaustive
list of expressions.

Conditional Branching (Selection)
Now we have covered some basic statements so that you can do math, how do we
branch the flow of execution? How do we do something if something holds true, and
what do we do otherwise?

We use if statements for that, these are like making decisions or asking the computer
questions, and doing stuff if the answer is yes or no (True or False). Here’s an example:

IGCSE Pseudocode Python
// either:
IF <condition>

THEN // PRESS SPACE TWICE!
<code> // PRESS SPACE TWICE!

ELSE
<code> // PRESS SPACE TWICE!

ENDIF

if <condition>:
<code> # PRESS SPACE 4 TIMES!

else:
<code>

37

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

// or:
IF <condition>

THEN
<code>

ENDIF

// e.g.
IF Age > 18

THEN
OUTPUT "you can drink!"

ELSE
OUTPUT "you cannot drink..."

ENDIF

or
if <condition>:

<code>

e.g.
if age > 18:

print("you can drink!")
else:

print("you cannot drink...")

Let’s immediately try an exercise. Write a program that asks the user for a temperature, and
decides if a glass of water at that temperature is too hot to drink. Assume all temperatures are in
Celsius, and that “too hot” is 45°C.

Answers are here:

IGCSE Pseudocode Python
DECLARE WaterTemp: INTEGER
OUTPUT "How hot is your water?"
INPUT WaterTemp

IF WaterTemp > 45
THEN

OUTPUT "The water is too hot!"
ELSE

OUTPUT "You can drink the water..."
ENDIF

water_temp: int
water_temp = int(input("How hot is your
water?"))

if water_temp > 45:
print("The water is too hot!")

else:
print("You can drink the water...")

Note that in Python, input only returns str, meaning that you must manually convert
the type, whereas in pseudocode, INPUT returns whatever type you declared the
variable with. But that’s it!

The program:
● Declares WaterTemp as an integer
● Prints out “How hot is your water?”, and grabs the user’s input
● If the water temperature is greater than 45, it outputs that the water is too hot,

otherwise it tells the user that you can drink the water.
○ Hence, the program branches its execution depending on the condition,

which is WaterTemperature > 45.

38

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

You can also chain if statements by using elif in Python. This means that when you are
done checking the first condition, you move onto the next one.

IGCSE Pseudocode Python
// This does not exist in pseudocode,
but can be emulated in the following
way:

IF <condition>
THEN

<code>
ELSE

IF <condition>
THEN

<code>
ELSE

<code>
ENDIF

// the IF statement inside the
// larger ELSE statement can be
repeated
// as many times as needed.

IF Age > 18
THEN

OUTPUT "You can drink!"
ELSE

IF Age > 16
THEN

OUTPUT "You can almost drink!"
ELSE

OUTPUT "You can’t drink..."
ENDIF

if <condition>:
<code>

elif <condition>:
<code>

else:
<code>

e.g.
if age > 18:

print("you can drink!")
elif age > 16:

print("you can almost drink!")
else:

print("you can’t drink...")

BEWARE: In pseudocode, you must follow the exact indentation of THEN being on a
new line, two spaces indented, and the code two spaces more. The code after ELSE
must only be indented by two spaces. This syntax is enforced in the examination, and is
considered in the mark scheme. All other code blocks are indented by 4 spaces.

With the previous example, can you modify your water temperature program to
print the water is too cold if it is less than 5 degrees?

Answers are on the next page!

39

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

IGCSE Pseudocode Python
DECLARE WaterTemp: INTEGER
OUTPUT "How hot is your water?"
INPUT WaterTemp

IF WaterTemperature > 45
THEN

OUTPUT "The water is too hot!"
ELSE

IF WaterTemperature < 5
THEN

OUTPUT "The water is too cold!"
ELSE

OUTPUT "You can drink the water..."
ENDIF

ENDIF

water_temp: int
water_temp = int(input("you can
drink!"))

if water_temp > 45:
print("The water is too hot!")

elif water_temp > 5:
print("The water is too cold!")

else:
print("You can drink the

water...")

By the Pseudocode example, we can see that elif simply means asking many questions
at one time; in Python, elif is simply a shortcut for the pseudocode example on the left.

Else-if chaining vs writing many If statements
Given this code that calculates grade boundaries,

IGCSE Pseudocode Python
DECLARE Grade: INTEGER
OUTPUT "Enter your grade”
INPUT Grade

IF Grade > 85
THEN

OUTPUT "Distinction"
ELSE

OUTPUT "Fail"
ENDIF

grade: int
grade = int(input("Enter your grade"))

if grade > 85:
print("Distinction")

else:
print("Fail")

What happens if you wanted to add another condition to see if the user got 70 marks
and above and therefore a regular pass? The naïve solution is on the next page:

40

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

IGCSE Pseudocode Python
DECLARE Grade: INTEGER
OUTPUT "Enter your grade"
INPUT Grade

IF Grade > 85
THEN

OUTPUT "Distinction"
ENDIF

IF Grade > 70
THEN

OUTPUT "Pass"
ELSE

OUTPUT "Fail"
ENDIF

grade: int
grade = int(input("Enter your grade"))

if grade > 85:
print("Distinction")

if grade > 70:
print("Pass")

else:
print("Fail")

However, what happens if the data is 90? The first condition will cause the program
to print “Distinction”, but as there is another if statement (asking a different
question), and 90 is greater than 70, the program will also print “Pass”, which is not
the intended behavior.

However by using else-if chaining:

IGCSE Pseudocode Python
DECLARE Grade: INTEGER
OUTPUT "Enter your grade"
INPUT Grade

IF Grade > 85
THEN

OUTPUT "Distinction"
ELSE

IF Grade > 70
THEN

OUTPUT "Pass"
ELSE

OUTPUT "Fail"
ENDIF

grade: int
grade = int(input("Enter your grade"))

if grade > 85:
print("Distinction")

elif grade > 70:
print("Pass")

else:
print("Fail")

The program will only print distinction, as the first condition is met, and it will jump
outside the if statement.

41

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Pattern Matching
Pattern matching also allows you to branch the flow of your program’s execution, but it
works a little bit differently than If statements.

Consider the following program written by a programmer very biased towards Apple:

IGCSE Pseudocode Python
DECLARE PhoneBrand: STRING
OUTPUT "Who made your phone?"
INPUT PhoneBrand

IF PhoneBrand = "Apple"
THEN

OUTPUT "You are the best!"
ELSE

IF PhoneBrand = "Google"
THEN

OUTPUT "Your phone is trash!"
ELSE

OUTPUT "Your phone is so trash
that I don’t even know who made it!"

ENDIF
ENDIF

phone_brand: str
phone_brand = input("Who made your
phone?")

if phone_brand == "Apple":
print("You are the best!")

elif phone_brand == "Google":
print("Your phone is trash!")

else:
print("Your phone is so trash that I

don’t even know who made it!")

That’s quite inefficient! Now imagine if the programmer would like to insult Xiaomi,
Samsung and Huawei users. We would need to repeat it 5 times in total! Not efficient,
right?

We can use pattern matching to solve that. Instead of checking the result one by one, we
can just check if the value we have in the variable matches any of our choices all at
once26. Note that to use Pattern Matching in Python, youmust have Python 3.10 and
above. If you use Replit or have an installation of Python from Python.org, you will be
fine.

The example is on the next page:

26 To really understand why it is so much better to pattern-match, you would need to be fluent in
C and know how value-based hashing functions work, and how assembly jumps work. Just know
that it can magically jump to the line number with the code just by looking at the value once.

42

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

IGCSE Pseudocode Python
CASE OF <expr>

<expr>: <statement>
<expr>: <statement>
...
// optionally,
OTHERWISE <statement>

ENDCASE

// e.g.
CASE OF PhoneBrand

"Apple": OUTPUT "You are the best!"
"Xiaomi": OUTPUT "Are you Chinese?"
"Google": OUTPUT "Your phone is

trash!"
"Samsung": OUTPUT "Are you Korean?"
OTHERWISE OUTPUT "Your phone is so

trash I don’t even know who made it!"
ENDCASE

match <expr>:
case <expr>:

<code>
case <expr>:

<code>
...
This is equivalent to OTHERWISE
case _:

<code>

match phone_brand:
case "Apple":

print("You are the best!")
case "Xiaomi":

print("Are you Chinese?")
case "Google":

print("Your phone is trash!")
case "Samsung":

print("Are you Korean?")
case _:

print("Your phone is so trash I
don’t even know who made it!")

The code above outputs a message depending on the value of PhoneBrand, but if it
doesn’t match any of them, it goes to the otherwise section of the code, which runs the
output statement there. Note that you can repeat as many of them as you need.

43

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Pre- and Post-condition Loops

Pre-condition loops (While Loops)
One of the next fundamental pillars of programming is looping or iteration. In
layman’s terms, iteration is just doing something repeatedly, while a condition is met. It
is better to show you how we can use code to season some fish and chips27:

As always, the general form goes first.

IGCSE Pseudocode Python
WHILE <condition> DO

<code>
ENDWHILE

// e.g.
DECLARE SaltGrams: INTEGER
SaltGrams <- 0
WHILE SaltGrams < 3 DO

SaltGrams <- SaltGrams + 1
OUTPUT "There is ", SaltGrams,

"Grams of salt on your Fish and Chips"
ENDWHILE

while <condition>:
<code>

e.g.
salt_grams: int = 0
while salt_grams > 1:

salt_grams += 1
print("There is ", salt_grams,

"Grams of salt on your Fish and Chips.")

Here, we run the following instructions:
● Add 1 gram of salt to SaltGrams
● Output “There is <SaltGrams> grams of salt on your Fish and Chips

While there is less than 3 grams of salt28. Since procedures and functions were not
introduced yet, you will have to view the examples in the appendix.

28 Unfortunately, British food is simply too bland.

27 This is targeted.

44

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Post-condition loops (Do-While, Repeat-While, Repeat-Until Loops)
This differs from pre-conditioned loops. In a pre-conditioned loop, the codemay not
even be run once, as the condition is checked before the loop begins. In a
post-conditioned loop, the code is always run once as the condition is checked before
the loop begins. Since I cannot show you assembly language29, I will simply show you in
IGCSE pseudocode with some C syntax to show labels30 (note thatGOTO simply makes
the code go to the label in this case)

IGCSE Pseudocode with C labels
DECLARE Password: STRING
OUTPUT "Enter your Password"
INPUT Password
LoopBegin:
IF Password <> "Secure Password"

THEN
OUTPUT "Wrong Password!"
OUTPUT "Enter your Password again:"
INPUT Password
GOTO LoopBegin

ENDIF

If the password is equal to “Secure Password” on the first try, the program will not ask
the user the second time to enter the correct password. Only if it is wrong will the code
run.

Let us now see the post-condition example:

IGCSE Pseudocode with C labels
DECLARE Password: STRING
OUTPUT "Enter your Password"
INPUT Password
LoopBegin:
OUTPUT "Wrong Password!"
OUTPUT "Enter your Password again:"
INPUT Password

IF Password <> "Secure Password"
THEN

GOTO LoopBegin
ENDIF

Now the condition is run at the very end of the loop.

30 Please do not write this in your exam.

29 One day, one day ;)

45

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

But now the code does not make sense, why does it ask for your password, say it’s
wrong, only for you to enter it again, and only then does the check start?

These two types of loops are not interchangeable, as post-condition loops like this one
would always run the contents of the loop, regardless of the condition being true the
first try or not. You must modify the code like so:

IGCSE Pseudocode with C labels
DECLARE Password: STRING
LoopBegin:
OUTPUT "Enter your Password:"
INPUT Password
IF Password <> "Secure Password"

THEN
OUTPUT "Wrong Password!"
GOTO LoopBegin

ENDIF

To make it correct again. Note that pseudocode does not have C’s do-while, it has
repeat-until, doing somethingwhile the condition is not met yet.

Python does not have post condition loops. After Python’s release and rise of
popularity as a language, it ideologically killed the post-condition loop as being mostly
unnecessary. Modern languages like Rust, Ruby, Lua, Kotlin, JavaScript and TypeScript,
etc. all do not have post-condition loops. Technically, you could get by with while
loops, but you must understand the difference between the two for your exams. You
can hack them into Python in the example below.

IGCSE Pseudocode Python
REPEAT

<code>
UNTIL <condition>

// e.g.
REPEAT

OUTPUT "Enter the password..."
INPUT Password
IF Password <> "Secret"

THEN
OUTPUT "Wrong..."

ENDIF
UNTIL Password = "Secret"

while True:
password = input("Enter the

password...")
if password != "Secret":

print("Wrong...")
else:

break

You can also exit a loop or go back to the top of the loop with break and continue,
respectively, in Python.

46

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Arrays and Lists
Arrays (or Lists in Python31) are data structures that allow you to store a sequence or a
list of values.

In Pseudocode, arrays are static, meaning that you cannot put extra things onto the list
or remove them whenever you please; the length is fixed at a set value and cannot be
changed. However, in Python, lists are dynamic, meaning that you can add or remove
elements from the back whenever you please.

Consider writing a program for a small classroom that checks the attendance of each
student, where there are 5 of them. You would need to store the name of each student
in some sequence, how would we do that?

The code example is below; the standard form will always be first:

IGCSE Pseudocode Python
DECLARE <ident>:ARRAY[l,h] OF <type>

// Declaring an ARRAY (2-dimensional)
//
// l1 and h1 are the bounds of the
// first dimension, l2 and h2 are the
// bounds of the second dimension
DECLARE <ident>:ARRAY[l1,h1:l2,h2] OF
<type>

// e.g.
DECLARE StudentNames:ARRAY[1,5] OF
STRING

// Adapted from the IGCSE Syllabus
DECLARE TicTacToe:ARRAY[1,3:1,3] OF
CHAR

// Assign to an ARRAY (1 dimensional)
StudentNames[2] ← "Marcos"
TicTacToe[1,3] ← ‘X’

// Use an ARRAY
<ident>[<index>] // 1D ARRAY

you do not have to specify bounds!
<ident>: list[<type>]

Declaring a list (2-dimensional)
<ident>: list[list[<type>]]

Initializing a list (1D):
<ident> = []

Initializing a list (2D)
<ident> = [[]]

e.g.
student_names: list[str]

Python does not have CHAR!
tic_tac_toe: list[list[str]]

Assign to a list
student_names[2] = "Marcos"

You can even assign a whole list!
student_names = ["Tom", "James",
"Jimmy", "John", "Peter"]

31 There are technically “Arrays” in Python, in that unlike Lists, which are dynamic and can have
items added or removed dynamically with a changing length, Python does have single-type
static arrays that do not have the dynamic functionality of lists in the array module, but they are
extremely infrequently used due to their lack of features. Just use lists, I may refer to Python
lists as arrays from this point forward.

47

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

// e.g.
StudentNames[3] // get 3rd student name

Use a list
<ident>[<index1>][<index2>] # 2D list

e.g.
student_names[3] # get 3rd student

name

You can even store a matrix or a 2D array of data; this is how you would represent a
Tic-tac-toe32 board:

IGCSE Pseudocode Python
// Adapted from the IGCSE Syllabus
DECLARE TicTacToe:ARRAY[1,3:1,3] OF
CHAR

// Assign to an ARRAY (1 dimensional)
TicTacToe[1,3] ← ‘X’

// Use an ARRAY
<ident>[<index1>,<index2>] // 2D ARRAY

// e.g.
TicTacToe[2,1] // get the character at

// 2, 1 on the Tic Tac
// Toe board

Python does not have CHAR!
tic_tac_toe: list[list[str]]

Assign to a list
tic_tac_toe[1][3] = "X"

Use a list
<ident>[<index1>][<index2>] # 2D list

e.g.
tic_tac_toe[2][1] # get the character

at 2, 1 on the
Tic Tac Toe board

32Noughts and crosses for those who prefer that.

48

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Count-based Iteration (for)
Now we have the superpower of being able to store sequences of data; how do we work
with themmost effectively?

Puzzle piece one:

IGCSE Pseudocode Python
FOR <counter> ← <begin> TO <end>

<code>
NEXT <counter>

FOR <counter> ← <begin> TO <end> STEP
<step>

<code>
NEXT <counter>

// e.g.
FOR Number ← 1 TO 30

OUTPUT Number
NEXT Number

FOR OddNumber ← 1 TO 30 STEP 2
OUTPUT OddNumber

NEXT OddNumber

for <counter> in range(<begin>, <end>):
<code>

for <counter> in range(<begin>, <end>,
<step>):

<code>

e.g.
for number in range(1, 30):

print(number)

for odd_number in range(1, 30, 2):
print(odd_number)

For loops allow you to go through all the numbers between two values33.

Puzzle Piece Two: In any programming language, you are provided with a way to get the
number of items in a list. If my class has 5 students, and I store the names of the
students in a list, I will simply get 5. Here’s an example:

IGCSE Pseudocode Python
OUTPUT LENGTH(StudentNames)
// gives me 5!

print(len(student_names))
gives me 5!

Note that I use LENGTH in pseudocode as it was specified in the Strings section of pseudocode, and it is used
to find the length of a sequence of characters. It also showed up in past-year papers, which is why I use it.

Puzzle Piece Three: We know that arrays in Pseudocode start at 1, and arrays in
Python start at 0. Since we can reliably get the start and end values for any list, can we
use a FOR loop to do operations on them?
Yes! This is one of the most common uses for for loops. Take a look:

33 I am referring to the standard range-based for loops here; For-each loops go in the appendix.

49

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

IGCSE Pseudocode Python
FOR Counter ← 1 TO
LENGTH(StudentNames)

OUTPUT "There is a student
called", StudentNames[Counter], " in
the class."
NEXT Counter

for counter in range(0, len(student_
names)):

print("There is a student called ",
student_names[counter], "in the class.")

On the pseudocode side, we set the range to 1 till 5 (the length of the list), and for each
number between them, including 5, it uses the array access syntax
StudentNames[Counter] to grab the Counterth element of the list and prints it out.

On the Python side, we set the range from 0 till 5. Note that in Python, the range
generated does not include the upper bound, so the numbers that will be given to you is
actually 0, 1, 2, 3 and only up to 4. It also uses the array access syntax
student_names[counter] to grab the Counterth element of the list.

We can even have a negative step to go backwards!

IGCSE Pseudocode Python
FOR Counter ← 1 TO
LENGTH(StudentNames) STEP 1

OUTPUT "There is a student
called", StudentNames[Counter], " in
the class."
NEXT Counter

for counter in range(0, len(student_
names), -1):

print("There is a student called ",
student_names[counter], "in the class.")

Procedures
We have passed the great filter of programming features; learning all the control flow
features. Give at pat on your own shoulder for that!34

Now we come to procedures. These are reusable sections of code that can be invoked
from anywhere you like and have a set content. These were called subroutines a very
long time ago (back when computers such as the Sinclair ZX-80 and XZ-81, etc. and
Commodore computers were around), and are still sometimes referred to as
subprograms, as just like a program, they are meant to reach an objective or sort a
problem, just one smaller than the objective of the program surrounding it.

34 Only if you read the whole programming guide so far. If you jumped here, Give a pat on your
shoulder after you have understood everything so far🙂

50

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Consider the following case. You are the grade-level coordinator of your grade, and you
need the average grade of 3 different classes. How are you going to total each of them?

You could do it like so:

IGCSE Pseudocode
// assume the students' arrays are already declared

DECLARE TotalA: INTEGER
TotalA <- 0
FOR Counter <- 1 TO LENGTH(ClassAGrades)

TotalA <- TotalA + ClassAGrades[Counter]
NEXT Counter
OUTPUT "Class A's total is, ", TotalA

DECLARE TotalB: INTEGER
TotalB <- 0
FOR Counter <- 1 TO LENGTH(ClassBGrades)

TotalB <- TotalB + ClassBGrades[Counter]
NEXT Counter
OUTPUT "Class B's total is, ", TotalB

DECLARE TotalC: INTEGER
TotalC <- 0
FOR Counter <- 1 TO LENGTH(ClassCGrades)

TotalC <- TotalC + ClassCGrades[Counter]
NEXT Counter
OUTPUT "Class C's total is, ", TotalC

DECLARE TotalD: INTEGER
TotalD <- 0
FOR Counter <- 1 TO LENGTH(ClassDGrades)

TotalD <- TotalD + ClassDGrades[Counter]
NEXT Counter
OUTPUT "Class D's total is, ", TotalD

DECLARE TotalE: INTEGER
TotalE <- 0
FOR Counter <- 1 TO LENGTH(ClassEGrades)

TotalE <- TotalE + ClassEGrades[Counter]
NEXT Counter
OUTPUT "Class E's total is, ", TotalE

// do something else

However, this would be quite inefficient. Since each of these chunks all solve a smaller
objective (total a list and print it out) anyway, we could use procedures to tidy the code
up.

51

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

An example section of what procedures look like first35 (standard form goes first as
always):

IGCSE Pseudocode Python
// declaring procedures
PROCEDURE <name>

<code>
ENDPROCEDURE

PROCEDURE <name>(<parameter name>:
<type>, <parameter name>:<type>, ...)

<code>
ENDPROCEDURE

// e.g.
PROCEDURE SayHello

OUTPUT "Hello!"
ENDPROCEDURE

PROCEDURE Line(Size:INTEGER)
FOR Length ← 1 TO Size

OUTPUT ‘-’
NEXT Length

ENDPROCEDURE
// calling procedures
CALL <name>
CALL <name>(<parameter>, <parameter>...)

// e.g.
CALL SayHello
CALL Line(10)

declaring procedures
def <name>():

<code>

def <name>(<parameter name>:<type>,
<parameter name>:<type>, ...):

<code>

e.g.
def say_hello():

print("Hello!")

def line(size: int):
for length in range(1, size):

print(‘-’)

calling functions
<name>()
<name>(<parameter>, <parameter>...)

e.g.
say_hello()
line(10)

As you can see, procedures can also take data in as arguments, or parameters. These
all have an assigned type36, and you can access them just like a variable from within the
procedure’s contents (this is called the body).

(Flip to the next page)

36 They are optional in Python, but they are present for clarity’s sake.

35 Very important: Python does NOT differentiate between procedures and functions! The right
portion of the table actually just shows standard Python functions that do not return, which is
what procedures are. You will not find dedicated keywords for procedures in modern languages.

52

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Here’s the first example but written with procedures.

IGCSE Pseudocode
// assume the students' arrays are already declared

PROCEDURE TotalClass(ClassName: CHAR, Grades: ARRAY OF INTEGER)
DECLARE Total: INTEGER
Total <- 0
FOR Counter <- 1 TO LENGTH(Grades)

Total <- Total + Grades[Counter]
NEXT Counter
OUTPUT "Class ", ClassName, " total is, ", Total

ENDPROCEDURE

CALL TotalClass('A', ClassAGrades)
CALL TotalClass('B', ClassBGrades)
CALL TotalClass('C', ClassCGrades)
CALL TotalClass('D', ClassDGrades)
CALL TotalClass('E', ClassEGrades)

Functions
Imagine procedures, but they give you something back. This makes functions more
like math functions, with inputs and outputs; take a look:

IGCSE Pseudocode Python
// declaring functions
FUNCTION <name> RETURNS <type>

<code>
RETURN <expr> // you MUST return

// something!
ENDFUNCTION

FUNCTION <name>(<parameter name>:
<type>, <parameter name>:<type>, ...)
RETURNS <type>

<code>
RETURN <expr> // you MUST return

// something!
ENDFUNCTION

// e.g.
FUNCTION GimmeFive RETURNS INTEGER

RETURN 5
ENDFUNCTION

FUNCTION AddOne(Num:INTEGER) RETURNS
INTEGER

DECLARE Result:INTEGER
Result ← Num + 1
RETURN Result

ENDFUNCTION

declaring functions
def <name>() -> <type>:

<code>
return <expr> # you MUST return

something!

def <name>(<parameter name>:<type>,
<parameter name>:<type>, ...) -> <type>:

<code>
return <expr> # you MUST return

something!

e.g.
def gimme_five() -> int:

return 5

def add_one(num: int) -> int:
result: int
result = num + 1
return result

53

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

// calling functions
GimmeFive()
AddOne(5)

// ...or use them as expressions
AddOne(GimmeFive())
OUTPUT GimmeFive(), "+ 1 is",
AddOne(5)

calling functions
gimme_five()
add_one(5)

...or use them as expressions
add_one(gimme_five())
print(gimme_five(), "+ 1 is",
add_one(5))

The key difference between procedures and functions are that procedures are fruitless
(they do not produce outputs), but functions are fruitful (they produce outputs).

Adapting the totaling example from above:

IGCSE Pseudocode
// assume the students' arrays are already declared

FUNCTION TotalClass(ClassName: CHAR, Grades: ARRAY OF INTEGER) RETURNS INTEGER
DECLARE Total: INTEGER
Total <- 0
FOR Counter <- 1 TO LENGTH(Grades)

Total <- Total + Grades[Counter]
NEXT Counter
RETURN Total

ENDFUNCTION

OUTPUT "Class A’s total is, ", TotalClass('A', ClassAGrades)
OUTPUT "Class B’s total is, ", TotalClass('B', ClassBGrades)
OUTPUT "Class C’s total is, ", TotalClass('C', ClassCGrades)
OUTPUT "Class D’s total is, ", TotalClass('D', ClassDGrades)
OUTPUT "Class E’s total is, ", TotalClass('E', ClassEGrades)

Exercise: Adapt the Pseudocode to Python. Answers are on the next page:

Python
def total_class(class_name: str, grades: list[int]) -> int:

total: int = 0
for counter in range(0, len(students)):

total += students[counter]
return total

print("Class A’s total is, ", total_class('A', class_a_grades))
print("Class B’s total is, ", total_class('B', class_b_grades))
print("Class C’s total is, ", total_class('C', class_c_grades))
print("Class D’s total is, ", total_class('D', class_d_grades))
print("Class E’s total is, ", total_class('E', class_e_grades))

54

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

String Manipulation
We are mostly done with the fundamental programming concepts! Congratulate
yourself even more if you were able to push through and understand the content.

These are strings.

IGCSE Pseudocode Python
"Good Morning"
"Irene Wong"

"Good Morning"
"Irene Wong"

Useful, right? In pseudocode, they begin at 1, and in Python, they begin at 0.

We can grab the length of the string just like how you would a list:

IGCSE Pseudocode Python
LENGTH(<string>)

// e.g.
LENGTH("Hello") // gives you 5

len(<string>)

e.g.
len("Hello") # gives you 5

To convert strings into either uppercase or lowercase:

IGCSE Pseudocode Python
UCASE(<string>)
LCASE(<string>)

// e.g.
UCASE("Hello") // gives you “HELLO”
LCASE("ANGER") // gives you “anger”

// Given a variable LastName,
UCASE(LastName)
// returns the uppercase of LastName

<string>.upper()
<string>.lower()

e.g.
"Hello".upper() # gives you “HELLO”
"ANGER".lower() # gives you “anger”

Given a variable last_name,
last_name.upper()
returns the uppercase of last_name

You can also slice only a portion of a string, this is called taking a substring. Note that
in Python, strings begin at 0. The end value for a substring operation in Python also
means that the operation ends before the position, i.e. if you substring a string
between 0 and 4 (in “hello”, h is 0, e is 1, l is 2, etc.) it will only take characters 0, 1, 2, 3
(“hell”).

55

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

IGCSE Pseudocode Python
SUBSTRING(<string>, <begin>, <length>)

// e.g.
SUBSTRING("Hello, Thomas!", 1, 5)
// gives you “Hello”

<string>[<begin>:<end>]

e.g.
"Hello, Thomas!"[0:4]
// gives you “Hell” (wrong!)
"Hello, Thomas!"[0:5]
// gives you “Hello”

File I/O
The last part, working with files. Just as a refresher, files are pieces of data with a
name stored on your hard drive. This includes text files, Microsoft Office/Apple
iWork37/LibreOffice38 files, your apps, plain text files, and images.

We can create files in code as well; simple text files that we can read and write strings
to.

Here’s the general process to using files in a programming language:
● You must open the file to tell the operating system (computer for the laymen)39

that you want to work with the file.
○ You can ask to either read the file, write the file, or both

● You can thenwrite or read content from the file, meaning changing it or viewing
what’s inside.

○ You do this by using variables to represent the file’s content in memory.
● You must close the file to tell the operating system and programming language

that you are done.
○ This writes any residual data that has only been partially written to the

file fully.
○ If you don’t close a file, you may get resource leaks and a dangling file

pointer40.

As always, standard form goes first:

40 Basically a number that represents the location of the file on disk.

39 The base layer upon which all your programs are on, all your hardware is managed, and
where all your file management happens, like Windows, macOS, Linux, BSD, and even Android
and iOS.

38Not just base!

37 Pages, Keynote, etc.

56

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

IGCSE Pseudocode Python
// file modes include READ and WRITE
//
// opening files
OPENFILE <file name> FOR <file mode>

// reading files (read into <variable>)
READFILE <file name>, <variable>

// writing files (write from <variable>)
WRITEFILE <file name>, <variable>

// closing files
CLOSEFILE <file name>

// e.g.
OPENFILE data.txt FOR READ AND WRITE
READFILE data.txt, Content
WRITEFILE data.txt, Content + "Hi!"
CLOSEFILE data.txt

READ corresponds to 'r'
WRITE corresponds to 'w'
READ AND WRITE corresponds to 'r+'
or 'w+'
opening files
<ident> = open(<file name>, <file
mode>)

reading files
<variable> = <ident>.read()

writing files
<ident>.write(<variable>)

closing files
<ident>.close()

e.g.
file = open("data.txt", "r+")
content = file.read()
file.write(content + "Hi!")
file.close()

57

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Appendix
You may find extra information and content here. Note that everything but exercises
are not required for your exam

Appendix One (Practice Projects)

1 — Attendance Program (Iteration, Branching)
Consider writing a program for a small classroom that checks the attendance of each student,
where there are 5 of them. You would need to store the name of each student in some sequence,
how would we do that?

We assume that it must store the attendance of each student in a separate list, and print
each of them out at the end in the following format:

John is Here
Charles is not Here
Thomas is Here
Peter is Here
William is Here

Etc. We will also assume that an array StudentNames is already populated with the
names of the students.

58

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

2 — Class Totaling Program (Iteration and Totaling, Procedures)

Given a procedure that totals the grades of all the students in a class,

IGCSE Pseudocode
// assume the students' arrays are already declared

PROCEDURE TotalClass(ClassName: CHAR, Grades: ARRAY OF INTEGER)
DECLARE Total: INTEGER
Total <- 0
FOR Counter <- 1 TO LENGTH(Grades)

Total <- Total + Grades[Counter]
NEXT Counter
OUTPUT "Class ", ClassName, " total is, ", Total

ENDPROCEDURE

CALL TotalClass('A', ClassAGrades)
CALL TotalClass('B', ClassBGrades)
CALL TotalClass('C', ClassCGrades)
CALL TotalClass('D', ClassDGrades)
CALL TotalClass('E', ClassEGrades)

Rewrite the example code above in Python. Hint, declaring the procedure looks
something like this:

Python
def total_class(class_name: str, grades: list[int]):

Write your code here!

3 – Password Creation System (String Manipulation, Iteration,
Branching)

Create a system to let users create passwords. You need to make sure that their
password is more than 10 characters long. If the user’s password does not meet this
requirement, keep entering the password until it does meet the requirement. Make use
of repeat-until loops and some conditional branching to notify the user if they
entered a too insecure password.

59

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Appendix Two (Sample Project Implementations)

1 — Attendance Program

IGCSE Pseudocode
DECLARE StudentNames: ARRAY[1:5] OF STRING
DECLARE StudentAttendance: ARRAY[1:5] OF BOOLEAN
DECLARE CurrentAttendance: STRING

FOR Counter <- 1 TO LENGTH(StudentNames)
OUTPUT "Is ", StudentNames[Counter], " Here?"
INPUT CurrentAttendance

IF CurrentAttendance = "Here"
THEN

StudentAttendance[Counter] <- TRUE
ELSE

StudentAttendance[Counter] <- FALSE
ENDIF

NEXT Counter

FOR Counter <- 1 TO LENGTH(StudentNames)
IF StudentAttendance[Counter] = TRUE

THEN
OUTPUT StudentNames[Counter], " is Here"

ELSE
OUTPUT StudentNames[Counter], " is not Here"

ENDIF
NEXT Counter

Python
create an empty list of 5 bools.
note that you cannot index into any index of the list and use it,
you must create it manually first. I use this multiplication syntax
as a shorthand, you only need to understand how the algorithm works.
student_names: list[str]
student_attendance: list[bool] = 5 * [bool()]
current_attendance: str = ""

for counter in range(0, len(student_names)):
You can only have one string as an argument, so just
use + for now
current_attendance = input("Is " + student_names[counter] + " Here?")

if current_attendance == "Here":
student_attendance[counter] = True

else:
student_attendance[counter] = False

for counter in range(0, len(student_names)):
Python does not need you to use == True or == false if the value is already
a boolean. The below is equivalent to
student_attendance[counter] == True
#

60

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

If you wanted to negate it, you could write:
if not student_attendance[counter] == True
#
if student_attendance[counter]:

print(student_names[counter], " is here")
else:

print(student_names[counter], " is not here")

To break down the code, we:
● Declare 2 lists, the one provided to us and the list of booleans to store

attendance
● Declare a variable to store the user input for the current student’s attendance.
● For every index in the list, student_names,

○ Ask the user for the student’s attendance
○ Save True to the student_attendance list at the same index if the user

typed “Here”, else save False. Saving the same index for the name and the
attendance allows us to have a pair of data bound by the index.

● Loop again when the first one is done
○ Print <student name> is here if True was saved at that index, else print

false.

2 — Class Totaling Program

Python
def total_class(class_name: str, grades: list[int]):

total: int = 0
for counter in range(0, len(students)):

total += students[counter]
print("Class ", class_name, " total is, ", total)

total_class('A', class_a_grades)
total_class('B', class_b_grades)
total_class('C', class_c_grades)
total_class('D', class_d_grades)
total_class('E', class_e_grades)

61

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

3 — Password Creation System

IGCSE Pseudocode
// declare the variable for later use
DECLARE UserPassword: STRING

// Our post-condition loop, this ensures that the user enters the password at least
// once
REPEAT

OUTPUT "Choose a password above 10 characters"
INPUT UserPassword

// somehow telling the user their password is invalid is better than repeating
// the prompt
IF LENGTH(UserPassword) < 10

THEN
OUTPUT "Your password is too short!"

ENDIF
// repeat until this condition is met, i.e. keep going while this is false
UNTIL LENGTH(UserPassword) >= 10

Python
Note that since we are using a pre-condition loop, we must initialize the
variable to something first to let the condition even evaluate.
#
If you don’t initialize the variable, it will simply throw an error.
user_password: str = ""

Here, the condition will also run at least once as user_password is always going
to be 0 characters long as we made it that way
while len(user_password) < 10:

user_password = input("Choose a password above 10 characters")

somehow telling the user their password is invalid is better than repeating
the prompt
if len(user_password) < 10:

print("Your password is too short!")

62

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Appendix Three (Extra Terminology)
Here are some key compiler engineering terms41

● Identifier (variable name)
● Literal (a value)
● Binary Operation (two values with an operator)
● Unary Operation (one value with an operator)

Appendix Four (Expressions in Python)
Here is the exhaustive list of what can be expressions in Python, note that you
definitely do not need all of them for your exam:

● Identifiers by themselves
● Literals by themselves (includes containers, listed below)

○ Lists
○ Tuples
○ Dictionaries
○ Sets

● Math expressions
● Comparison Expressions
● Logical Expressions
● Bitwise Operations (You have covered these in chapters 1 and 10!)

○ Bitwise AND, OR, NOT, XOR, NOR, NAND
○ Bit shifts (left and rights)

● Membership Operators
○ In and not in; If fruit were a string, and orchid were a list of strings, you

could run fruit in orchid instead of a linear search, but not
recommended for your exam.

● Fruitful Function Calls (functions that return)
● Comprehensions (expressions that run loops to generate the following)

○ Lists
○ Tuples
○ Dictionaries
○ Sets

● Ternary Operations
○ x if condition else y

41 That’s what I, Eason Qin specialize in.

63

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

● Walrus Operator Results (assigns value to variable and also evaluates to an
expression)

● Array Indexes and slices
● Generators
● Type Casts
● Context managers

○ with open('file.txt') as f: f.read()
● F-strings
● Class Constructors andmethod calls

Appendix Five (Using this guide effectively)
In order to make the most out of this guide and your existing revision resources, I
recommend the following:

● Revisit your own notes to go over the links in your brain you have made yourself.
This is actually very helpful!

● Read the revision guide from cover to cover, to deepen your understanding,
think of this guide just being a large collection of detailed notes.

○ You should be able to use a highlighter on this guide!
○ You can also make notes off of this guide
○ Note that this guide is not comprehensive, for the last time; please do

not rely on this as your ONLY source of revision.
● USE THE TEXTBOOK! It is still a great resource. Check the table of contents for

the things that you must learn, make sure you use the textbook to reinforce your
learning.

○ Also make sure to do as many exercises in the textbook as you need.
Unfortunately, we are learning computer science in an academic
context, so you must do things the academic way, i.e. research projects, a
very static, concrete and somewhat outdated syllabus, and exams.

○ The textbook also has a lot of diagrams and tables, which is what this
doesn’t have.

● When you need help, just consult the guide; check the table of contents for what
you need, and go over what you highlighted or read or took notes on.

64

The IGCSE Computer Science G1 @ OFS Semester One Exam: Programming and Logic Gates

Appendix Six (Digital Copies)

If you have the printed copy, you may find the digital copy here:

It is hosted onmywebsite (ezntek.com) and is 100% safe!

Alternatively, visit this hyperlink or visit the following weblink:

https://ezntek.com/revision/csrg_g1_2024.html

To get a constantly updated version of the CSRG.

Sorry that the PDF does not have proper bookmarks, blame Google Docs! The
developers are so incompetent that they can’t even put that tiny bit more effort into
adding bookmarks based on headings. I have no way of doing it. Sorry, but not my bad!

Please readmy blog for more information, at ezntek.com.

65

https://ezntek.com
http://ezntek.com
https://ezntek.com/revision/csrg_g1_2024.html
https://ezntek.com/revision/csrg_g1_2024.html

